1,803 research outputs found

    Note on Signature Change and Colombeau Theory

    Get PDF
    Recent work alludes to various `controversies' associated with signature change in general relativity. As we have argued previously, these are in fact disagreements about the (often unstated) assumptions underlying various possible approaches. The choice between approaches remains open.Comment: REVTex, 3 pages; to appear in GR

    Octonionic Cayley Spinors and E6

    Full text link
    Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group E6, and of its subgroups. We are therefore led to a description of E6 in terms of 3x3 octonionic matrices, generalizing previous results in the 2x2 case. Our treatment naturally includes a description of several important subgroups of E6, notably G2, F4, and (the double cover of) SO(9,1), An interpretation of the actions of these groups on the squares of 3-component "Cayley spinors" is suggested.Comment: 14 pages, 1 figure, contributed talk at 2nd Mile High Conference (Denver 2009

    BOUNDARY CONDITIONS FOR THE SCALAR FIELD IN THE PRESENCE OF SIGNATURE CHANGE

    Get PDF
    We show that, contrary to recent criticism, our previous work yields a reasonable class of solutions for the massless scalar field in the presence of signature change.Comment: 11 pages, Plain Tex, no figure

    A New Look at the Ashtekar-Magnon Energy Condition

    Get PDF
    In 1975, Ashtekar and Magnon showed that an energy condition selects a unique quantization procedure for certain observers in general, curved spacetimes. We generalize this result in two important ways, by eliminating the need to assume a particular form for the (quantum) Hamiltonian, and by considering the surprisingly nontrivial extension to nonminimal coupling.Comment: REVTeX, 10 page

    The symplectic origin of conformal and Minkowski superspaces

    Get PDF
    Supermanifolds provide a very natural ground to understand and handle supersymmetry from a geometric point of view; supersymmetry in d=3,4,6d=3,4,6 and 1010 dimensions is also deeply related to the normed division algebras. In this paper we want to show the link between the conformal group and certain types of symplectic transformations over division algebras. Inspired by this observation we then propose a new\,realization of the real form of the 4 dimensional conformal and Minkowski superspaces we obtain, respectively, as a Lagrangian supermanifold over the twistor superspace C41\mathbb{C}^{4|1} and a big cell inside it. The beauty of this approach is that it naturally generalizes to the 6 dimensional case (and possibly also to the 10 dimensional one) thus providing an elegant and uniform characterization of the conformal superspaces.Comment: 15 pages, references added, minor change

    Tensor Generalizations of Affine Symmetry Vectors

    Full text link
    A definition is suggested for affine symmetry tensors, which generalize the notion of affine vectors in the same way that (conformal) Killing tensors generalize (conformal) Killing vectors. An identity for these tensors is proved, which gives the second derivative of the tensor in terms of the curvature tensor, generalizing a well-known identity for affine vectors. Additionally, the definition leads to a good definition of homothetic tensors. The inclusion relations between these types of tensors are exhibited. The relationship between affine symmetry tensors and solutions to the equation of geodesic deviation is clarified, again extending known results about Killing tensors.Comment: 11 page
    corecore