8 research outputs found

    Semi-parametric modeling of SARS-CoV-2 transmission in Orange County, California using tests, cases, deaths, and seroprevalence data

    Full text link
    Mechanistic modeling of SARS-CoV-2 transmission dynamics and frequently estimating model parameters using streaming surveillance data are important components of the pandemic response toolbox. However, transmission model parameter estimation can be imprecise, and sometimes even impossible, because surveillance data are noisy and not informative about all aspects of the mechanistic model. To partially overcome this obstacle, we propose a Bayesian modeling framework that integrates multiple surveillance data streams. Our model uses both SARS-CoV-2 diagnostics test and mortality time series to estimate our model parameters, while also explicitly integrating seroprevalence data from cross-sectional studies. Importantly, our data generating model for incidence data takes into account changes in the total number of tests performed. We model transmission rate, infection-to-fatality ratio, and a parameter controlling a functional relationship between the true case incidence and the fraction of positive tests as time-varying quantities and estimate changes of these parameters nonparameterically. We apply our Bayesian data integration method to COVID-19 surveillance data collected in Orange County, California between March, 2020 and March, 2021 and find that 33-62% of the Orange County residents experienced SARS-CoV-2 infection by the end of February, 2021. Despite this high number of infections, our results show that the abrupt end of the winter surge in January, 2021, was due to both behavioral changes and a high level of accumulated natural immunity.Comment: 37 pages, 16 pages of main text, including 5 figures, 1 tabl

    Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States

    No full text
    Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4–38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19
    corecore