5,446 research outputs found
Bioinspired electrohydrodynamic ceramic patterning of curved metallic substrates
Template-assisted electrohydrodynamic atomisation (TAEA) has been used for the first time to pattern curved metallic surfaces. Parallel lines of ceramic titania (TiO2) were produced on titanium substrates, convex and concave with diameters of ~25 mm, at the ambient temperature. Optimal results were obtained with 4 wt% TiO2 in ethanol suspension deposited over 300 s during stable cone-jetting at 20 µl/min, 10kV and collection distance 80 mm. A high degree of control over pattern line width, interline spacing and thickness were achieved. Nanoindentation load-displacement curves were continuous for the full loading and unloading cycle, indicating good adhesion between pattern and substrate. At a loading rate of 1 μN/s and a hold time of 1 s, pattern hardness decreased as load increased up to 7 μN and remained at 0·1 GPa up to higher loads. Elastic modulus behaved similarly, and both were not sensitive to loading rate. The effect of heat treatment to further consolidate the patterned deposits was also investigated. Hardness of the patterns was not markedly affected by heating. This work shows that TAEA is highly controllable and compatible on a range of substrate geometries. Extending TAEA capabilities from flat to curved surfaces, enabling the bioactive patterning of different surface geometries, takes this technology closer to orthopaedic engineering applications
Disk-Loss and Disk Renewal Phases in Classical Be Stars II. Detailed Analysis of Spectropolarimetric Data
In Wisniewski et al. 2010, paper I, we analyzed 15 years of spectroscopic and
spectropolarimetric data from the Ritter and Pine Bluff Observatories of 2 Be
stars, 60 Cygni and {\pi} Aquarii, when a transition from Be to B star
occurred. Here we anaylize the intrinsic polarization, where we observe
loop-like structures caused by the rise and fall of the polarization Balmer
Jump and continuum V-band polarization being mismatched temporally with
polarimetric outbursts. We also see polarization angle deviations from the
mean, reported in paper I, which may be indicative of warps in the disk, blobs
injected at an inclined orbit, or spiral density waves. We show our ongoing
efforts to model time dependent behavior of the disk to constrain the
phenomena, using 3D Monte Carlo radiative transfer codes.Comment: 2 pages, 6 figures, IAU Symposium 27
Using Rheo-Small-Angle Neutron Scattering to Understand How Functionalised Dipeptides Form Gels
We explore the use of rheo-small-angle neutron scattering as a method to collect structural information from neutron scattering simultaneously with rheology to understand how low-molecular-weight hydrogels form and behave under shear. We examine three different gelling hydrogel systems to assess what structures are formed and how these influence the rheology. Furthermore, we probe what is happening to the network during syneresis and why the gels do not recover after an applied strain. All this information is vital when considering gels for applications such as 3D-printing and injection
Optical and infrared photometry of the blazar PKS0537-441
We present a large collection of photometric data on the Blazar PKS 0537-441
in the VRIJHK bands taken in 2004-2009. At least three flare-like episodes with
months duration, and >3 mag amplitude are apparent. The spectral energy
distribution is consistent with a power law, and no indication of a thermal
component is found. We searched for short time scale variability, and an
interesting event was identified in the J band, with a duration of ~25 minutes.Comment: 10 pages, 3 figures, in press in ApJ
Scalar Mesons a0(1450) and sigma(600) from Lattice QCD
We study the a0 and sigma mesons with the overlap fermion in the chiral
regime with the pion mass as low as 182 MeV in the quenched approximation.
After the eta'pi ghost states are separated, we find that the a0 mass with
q\bar{q} interpolation field to be almost independent of the quark mass in the
region below the strange quark mass. The chirally extrapolated results are
consistent with a0(1450) being the u\bar{d} meson and K0*(1430) being the
u\bar{s} meson with calculated masses at 1.42+_0.13 GeV and 1.41+_ 0.12 GeV
respectively. We also calculate the scalar mesonium with a tetraquark
interpolation field. In addition to the two pion scattering states, we find a
state at around 550 MeV. Through the study of volume dependence, we confirm
that this state is a one-particle state, in contrast to the two-pion scattering
states. This suggests that the observed state is a tetraquark mesonium which is
quite possibly the sigma(600) meson.Comment: 11 pages, 9 figures, accepted for publication in Phys. Rev.
Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study
The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism
Game On? Smoking Cessation Through the Gamification of mHealth: A Longitudinal Qualitative Study
BACKGROUND: Finding ways to increase and sustain engagement with mHealth interventions has become a challenge during application development. While gamification shows promise and has proven effective in many fields, critical questions remain concerning how to use gamification to modify health behavior. OBJECTIVE: The objective of this study is to investigate how the gamification of mHealth interventions leads to a change in health behavior, specifically with respect to smoking cessation. METHODS: We conducted a qualitative longitudinal study using a sample of 16 smokers divided into 2 cohorts (one used a gamified intervention and the other used a nongamified intervention). Each participant underwent 4 semistructured interviews over a period of 5 weeks. Semistructured interviews were also conducted with 4 experts in gamification, mHealth, and smoking cessation. Interviews were transcribed verbatim and thematic analysis undertaken. RESULTS: Results indicated perceived behavioral control and intrinsic motivation acted as positive drivers to game engagement and consequently positive health behavior. Importantly, external social influences exerted a negative effect. We identified 3 critical factors, whose presence was necessary for game engagement: purpose (explicit purpose known by the user), user alignment (congruency of game and user objectives), and functional utility (a well-designed game). We summarize these findings in a framework to guide the future development of gamified mHealth interventions. CONCLUSIONS: Gamification holds the potential for a low-cost, highly effective mHealth solution that may replace or supplement the behavioral support component found in current smoking cessation programs. The framework reported here has been built on evidence specific to smoking cessation, however it can be adapted to health interventions in other disease categories. Future research is required to evaluate the generalizability and effectiveness of the framework, directly against current behavioral support therapy interventions in smoking cessation and beyond
Effect of Exposure on the Mechanical Properties of Gamma MET PX
The effect of a service environment exposure on the mechanical properties of a high Nb content TiAl alloy, Gamma MET PX , was assessed. Gamma MET PX, like other TiAl alloys, experiences a reduction of ductility following high temperature exposure. Exposure in Ar, air, and high-purity oxygen all resulted in a loss of ductility with the ductility reduction increasing with oxygen content in the exposure atmosphere. Embrittling mechanisms, including bulk microstructural changes, moisture induced environmental embrittlement, and near surface effects were investigated. The embrittlement has been shown to be a near-surface effect, most likely due to the diffusion of oxygen into the alloy
- …