5,995 research outputs found

    Pathological classification of equine recurrent laryngeal neuropathy

    Get PDF
    Recurrent Laryngeal Neuropathy (RLN) is a highly prevalent and predominantly left‐sided, degenerative disorder of the recurrent laryngeal nerves (RLn) of tall horses, that causes inspiratory stridor at exercise because of intrinsic laryngeal muscle paresis. The associated laryngeal dysfunction and exercise intolerance in athletic horses commonly leads to surgical intervention, retirement or euthanasia with associated financial and welfare implications. Despite speculation, there is a lack of consensus and conflicting evidence supporting the primary classification of RLN, as either a distal (“dying back”) axonopathy or as a primary myelinopathy and as either a (bilateral) mononeuropathy or a polyneuropathy; this uncertainty hinders etiological and pathophysiological research. In this review, we discuss the neuropathological changes and electrophysiological deficits reported in the RLn of affected horses, and the evidence for correct classification of the disorder. In so doing, we summarize and reveal the limitations of much historical research on RLN and propose future directions that might best help identify the etiology and pathophysiology of this enigmatic disorder

    Bioinspired electrohydrodynamic ceramic patterning of curved metallic substrates

    Get PDF
    Template-assisted electrohydrodynamic atomisation (TAEA) has been used for the first time to pattern curved metallic surfaces. Parallel lines of ceramic titania (TiO2) were produced on titanium substrates, convex and concave with diameters of ~25 mm, at the ambient temperature. Optimal results were obtained with 4 wt% TiO2 in ethanol suspension deposited over 300 s during stable cone-jetting at 20 µl/min, 10kV and collection distance 80 mm. A high degree of control over pattern line width, interline spacing and thickness were achieved. Nanoindentation load-displacement curves were continuous for the full loading and unloading cycle, indicating good adhesion between pattern and substrate. At a loading rate of 1 μN/s and a hold time of 1 s, pattern hardness decreased as load increased up to 7 μN and remained at 0·1 GPa up to higher loads. Elastic modulus behaved similarly, and both were not sensitive to loading rate. The effect of heat treatment to further consolidate the patterned deposits was also investigated. Hardness of the patterns was not markedly affected by heating. This work shows that TAEA is highly controllable and compatible on a range of substrate geometries. Extending TAEA capabilities from flat to curved surfaces, enabling the bioactive patterning of different surface geometries, takes this technology closer to orthopaedic engineering applications

    Lifting the Veil on Obscured Accretion: Active Galactic Nuclei Number Counts and Survey Strategies for Imaging Hard X-Ray Missions

    Get PDF
    Finding and characterizing the population of active galactic nuclei (AGNs) that produces the X-ray background (XRB) is necessary to connect the history of accretion to observations of galaxy evolution at longer wavelengths. The year 2012 will see the deployment of the first hard X-ray imaging telescope which, through deep extragalactic surveys, will be able to measure the AGN population at the energies where the XRB peaks (~20-30 keV). Here, we present predictions of AGN number counts in three hard X-ray bandpasses: 6-10 keV, 10-30 keV, and 30-60 keV. Separate predictions are presented for the number counts of Compton thick AGNs, the most heavily obscured active galaxies. The number counts are calculated for five different models of the XRB that differ in the assumed hard X-ray luminosity function, the evolution of the Compton thick AGNs, and the underlying AGN spectral model. The majority of the hard X-ray number counts will be Compton thin AGNs, but there is a greater than tenfold increase in the Compton thick number counts from the 6-10 keV to the 10-30 keV band. The Compton thick population shows enough variation that a hard X-ray number counts measurement will constrain the models. The computed number counts are used to consider various survey strategies for the NuSTAR mission, assuming a total exposure time of 6.2 Ms. We find that multiple surveys will allow a measurement of Compton thick evolution. The predictions presented here should be useful for all future imaging hard X-ray missions

    Using Rheo-Small-Angle Neutron Scattering to Understand How Functionalised Dipeptides Form Gels

    Get PDF
    We explore the use of rheo-small-angle neutron scattering as a method to collect structural information from neutron scattering simultaneously with rheology to understand how low-molecular-weight hydrogels form and behave under shear. We examine three different gelling hydrogel systems to assess what structures are formed and how these influence the rheology. Furthermore, we probe what is happening to the network during syneresis and why the gels do not recover after an applied strain. All this information is vital when considering gels for applications such as 3D-printing and injection

    Scalar Mesons a0(1450) and sigma(600) from Lattice QCD

    Full text link
    We study the a0 and sigma mesons with the overlap fermion in the chiral regime with the pion mass as low as 182 MeV in the quenched approximation. After the eta'pi ghost states are separated, we find that the a0 mass with q\bar{q} interpolation field to be almost independent of the quark mass in the region below the strange quark mass. The chirally extrapolated results are consistent with a0(1450) being the u\bar{d} meson and K0*(1430) being the u\bar{s} meson with calculated masses at 1.42+_0.13 GeV and 1.41+_ 0.12 GeV respectively. We also calculate the scalar mesonium with a tetraquark interpolation field. In addition to the two pion scattering states, we find a state at around 550 MeV. Through the study of volume dependence, we confirm that this state is a one-particle state, in contrast to the two-pion scattering states. This suggests that the observed state is a tetraquark mesonium which is quite possibly the sigma(600) meson.Comment: 11 pages, 9 figures, accepted for publication in Phys. Rev.
    corecore