2 research outputs found
The Effects of Muscle Energy on Low Back Pain: A 3D Analysis of running biomechanics
Background: Muscle energy technique (MET) is asn osteopathic treatment technique that is utilized frequently in the clinical setting, yet the overall effectiveness is minimally supported within literature. MET is an osteopathic technique that involves an isometric contract relax technique intended to improve alignment and enhance neuromuscular education. Objective: The purpose of this study was to determine the effectiveness of MET on running kinetics on subjects with low back pain. Method: A quasi-experimental research design was implemented and subjects, all of whom either had a history of or currently experience low back pain, underwent pre-intervention data collection of: anthropometric measurements, medical history, dorsaVi 3D running analysis, and a musculoskeletal and neurological clinical exam. Subjects underwent 6 weeks of isolated lumbo-pelvic MET at a frequency of twice a week, and were instructed to avoid all other treatment. Post-intervention data collected included a clinical exam and another dorsaVI running analysis. Results: Data was analyzed including: pre and post-treatment initial peak acceleration, ground contact time, and ground reaction force. A paired t-test comparing pre and post mean kinetic changes demonstrated the following p values: initial peak acceleration p = .80, ground contact time p = .96, and ground reaction force p = .68. Conclusion: This study demonstrated that isolated MET treatment is not statistically significant for changing 3D kinetic running variable in subjects with low back pain. Clinical Implications: Recommend healthcare providers to use a multi-treatment approach for low back pain. Future research should include a control group and larger sample size
A Comparison of Inertial Motion Capture Systems: DorsaVi and Xsens
Background: dorsaVi Professional Suite, founded in 2018, is a 3D wearable sensor technology system that monitors the kinematic data of the lower extremity and lumbar spine. The dorsaVi system is used in the clinical setting to assist with clinical rehabilitation and preventive measures. Objective: The purpose of this study was to compare the inertial motion capture systems: the dorsaVi Professional Suite and Xsens to determine validity and reliability. Methods: This study utilized nine participants (7 female, 2 male) with data collected on two separate sessions. Each subject performed 15 repetitions each of double leg squats, left single leg squat, and right single leg squat during session one and then repeated the same testing procedure 7-10 days later. Kinematic variables measured were tibial inclination, knee varus, and knee valgus. Pearson product moment correlation coefficients were used to demonstrate the relationship within and between the motion capture systems across the knee positions and squat trials. Results: Within system reliability measurements demonstrated strong correlations (r>0.90) of the lower extremity kinematic data between testing sessions. Between system validity measurements also demonstrated strong correlations (r>0.90) across all lower extremity movements. Conclusions: The dorsaVi Professional Suite knee module kinematic data showed strong correlations to the validated motion capture system (Xsens). Thus, a clinician should be confident in using the dorsaVi in the evaluation, diagnosis, and treatment of patients