12,234 research outputs found
Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco
The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its
observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a
spectrum characterized by asymmetric and blue-shifted emission lines. Here we
investigate the origin of these asymmetries through three-dimensional
hydrodynamic simulations describing the outburst during the first 20 days of
evolution. The model takes into account thermal conduction and radiative
cooling and assumes a blast wave propagates through an equatorial density
enhancement. From the simulations, we synthesize the X-ray emission and derive
the spectra as they would be observed with Chandra. We find that both the blast
wave and the ejecta distribution are efficiently collimated in polar directions
due to the presence of the equatorial density enhancement. The majority of the
X-ray emission originates from the interaction of the blast with the equatorial
density enhancement and is concentrated on the equatorial plane as a ring-like
structure. Our "best-fit" model requires a mass of ejecta in the outburst
and an explosion energy erg and reproduces the distribution of emission
measure vs temperature and the evolution of shock velocity and temperature
inferred from the observations. The model predicts asymmetric and blue-shifted
line profiles similar to those observed and explains their origin as due to
substantial X-ray absorption of red-shifted emission by ejecta material. The
comparison of predicted and observed Ne and O spectral line ratios reveals no
signs of strong Ne enhancement and suggests the progenitor is a CO white dwarf.Comment: 16 pages, 17 Figures; accepted for publication on MNRA
X-ray Development of the Classical Nova V2672 Ophiuchi with Suzaku
We report the Suzaku detection of a rapid flare-like X-ray flux amplification
early in the development of the classical nova V2672 Ophiuchi. Two
target-of-opportunity ~25 ks X-ray observations were made 12 and 22 days after
the outburst. The flux amplification was found in the latter half of day 12.
Time-sliced spectra are characterized by a growing supersoft excess with
edge-like structures and a relatively stable optically-thin thermal component
with Ka emission lines from highly ionized Si. The observed spectral evolution
is consistent with a model that has a time development of circumstellar
absorption, for which we obtain the decline rate of ~10-40 % in a time scale of
0.2 d on day 12. Such a rapid drop of absorption and short-term flux
variability on day 12 suggest inhomogeneous ejecta with dense blobs/holes in
the line of sight. Then on day 22 the fluxes of both supersoft and thin-thermal
plasma components become significantly fainter. Based on the serendipitous
results we discuss the nature of this source in the context of both short- and
long-term X-ray behavior.Comment: To appear in PASJ; 9 pages, 5 figures, 2 table
Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants
Multi-wavelength centimeter continuum observations of non-dusty,
non-pulsating K spectral-type red giants directly sample their chromospheres
and wind acceleration zones. Such stars are feeble emitters at these
wavelengths however, and previous observations have provided only a small
number of modest S/N measurements slowly accumulated over three decades. We
present multi-wavelength Karl G. Jansky Very Large Array thermal continuum
observations of the wind acceleration zones of two dust-free red giants,
Arcturus (Alpha Boo: K2 III) and Aldebaran (Alpha Tau: K5 III). Importantly,
most of our observations of each star were carried out over just a few days, so
that we obtained a snapshot of the different stellar atmospheric layers sampled
at different wavelengths, independent of any long-term variability. We report
the first detections at several wavelengths for each star including a detection
at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band)
detection for Alpha Boo. This is the first time single luminosity class III red
giants have been detected at these continuum wavelengths. Our long-wavelength
data sample the outer layers of Alpha Boo's atmosphere where its wind velocity
is approaching its terminal value and the ionization balance is becoming
frozen-in. For Alpha Tau, however, our long-wavelength data are still sampling
its inner atmosphere, where the wind is still accelerating probably due to its
lower mass-loss rate. We compare our data with published semi-empirical models
based on ultraviolet data, and the marked deviations highlight the need for new
atmospheric models to be developed. Spectral indices are used to discuss the
possible properties of the stellar atmospheres, and we find evidence for a
rapidly cooling wind in the case of Alpha Boo. Finally, we develop a simple
analytical wind model for Alpha Boo based on our new long-wavelength flux
measurements
Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot
High resolution spectroscopy, providing constraints on plasma motions and
temperatures, is a powerful means to investigate the structure of accretion
streams in CTTS. In particular, the accretion shock region, where the accreting
material is heated to temperatures of a few MK as it continues its inward bulk
motion, can be probed by X-ray spectroscopy. To attempt to detect for the first
time the motion of this X-ray-emitting post-shock material, we searched for a
Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This
test should unveil the nature of this X-ray emitting plasma component in CTTS,
and constrain the accretion stream geometry. We searched for a Doppler shift in
the X-ray emission from TW Hya with two different methods, by measuring the
position of a selected sample of emission lines, and by fitting the whole TW
Hya X-ray spectrum, allowing the line-of-sight velocity to vary. We found that
the plasma at T~2-4 MK has a line-of-sight velocity of 38.3+/-5.1 km/s with
respect to the stellar photosphere. This result definitively confirms that this
X-ray-emitting material originates in the post-shock region, at the base of the
accretion stream, and not in coronal structures. The comparison of the observed
velocity along the line of sight, 38.3+/-5.1 km/s, with the inferred intrinsic
velocity of the post shock of TW Hya, v_post~110-120 km/s, indicates that the
footpoints of the accretion streams on TW Hya are located at low latitudes on
the stellar surface. Our results indicate that complex magnetic field
geometries, such as that of TW Hya, permit low-latitude accretion spots.
Moreover, since on TW Hya the redshift of the soft X-ray emission is very
similar to that of the narrow component of the CIV resonance doublet at 1550
Ang, as found by Ardila et al. (2013), then the plasma at 2-4 MK and that at
0.1 MK likely originate in the same post-shock regions.Comment: Accepted for publication in Astronomy & Astrophysics; 2nd version
after language editor corrections; 16 pages, 8 figures, 6 table
- …