14,138 research outputs found

    Coronal Electron Confinement by Double Layers

    Full text link
    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons (T.C. Li, J.F. Drake, and M. Swisdak, 2012, ApJ, 757, 20). The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations, and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and find also a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source

    Chemical analysis of giant stars in the young open cluster NGC 3114

    Full text link
    Context: Open clusters are very useful targets for examining possible trends in galactocentric distance and age, especially when young and old open clusters are compared. Aims: We carried out a detailed spectroscopic analysis to derive the chemical composition of seven red giants in the young open cluster NGC 3114. Abundances of C, N, O, Li, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd were obtained, as well as the carbon isotopic ratio. Methods: The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. Results: We found that NGC 3114 has a mean metallicity of [Fe/H] = -0.01+/-0.03. The isochrone fit yielded a turn-off mass of 4.2 Msun. The [N/C] ratio is in good agreement with the models predicted by first dredge-up. We found that two stars, HD 87479 and HD 304864, have high rotational velocities of 15.0 km/s and 11.0 km/s; HD 87526 is a halo star and is not a member of NGC 3114. Conclusions: The carbon and nitrogen abundance in NGC 3114 agree with the field and cluster giants. The oxygen abundance in NGC 3114 is lower compared to the field giants. The [O/Fe] ratio is similar to the giants in young clusters. We detected sodium enrichment in the analyzed cluster giants. As far as the other elements are concerned, their [X/Fe] ratios follow the same trend seen in giants with the same metallicity.Comment: 17 pages, 9 figures, 10 tables; accepted for publication in A&

    X-Ray Wakes in Abell 160

    Get PDF
    `Wakes' of X-ray emission have now been detected trailing behind a few (at least seven) elliptical galaxies in clusters. To quantify how widespread this phenomenon is, and what its nature might be, we have obtained a deep (70 ksec) X-ray image of the poor cluster Abell 160 using the ROSAT HRI. Combining the X-ray data with optical positions of confirmed cluster members, and applying a statistic designed to search for wake-like excesses, we confirm that this phenomenon is observed in galaxies in this cluster. The probability that the detections arise from chance is less than 0.0038. Further, the wakes are not randomly distributed in direction, but are preferentially oriented pointing away from the cluster centre. This arrangement can be explained by a simple model in which wakes arise from the stripping of their host galaxies' interstellar media due to ram pressure against the intracluster medium through which they travel.Comment: 7 pages, 7 figures, accepted for publication in MNRA
    • …
    corecore