15,789 research outputs found

    Reference list for stability theory in ordinary differential equations

    Get PDF
    Reference list for stability and control theory in ordinary differential equation

    Determination of Chilling Requirement of Arkansas Thornless Blackberry Cultivars

    Get PDF
    Little research has been done to determine the chilling requirement for blackberry cultivars. However, field observations from areas where fewer hours of chilling occur indicate that ā€˜Navahoā€™ requires more hours of chilling than does ā€˜Arapahoā€™. The objective of our study was to determine a method for measuring the chilling requirement using whole plants of two blackberry cultivars, Arapaho and Navaho. One-year old, bare-root plants were field-dug on 26 October 1999 and placed in a cold chamber at 3ĀŗC. Ten single-plant replications of each cultivar were removed at 100-hour intervals up to 1000 hours. The plants were potted and placed in a greenhouse (daily minimum temperature 15ĀŗC), and plants were arranged on benches in a completely randomized design. Budbreak was recorded on a weekly basis. Data for budbreak were analyzed as a two-factor factorial (2 cultivars and 10 chilling treatments) by SAS and means were separated by least significant difference (P = 0.05). Data indicated that the chilling requirement for Arapaho is between 400 and 500 hours. For Navaho, the data indicated the chilling requirement was between 800 and 900 hours. These data support previous observations and indicate that the method used was successful in determining the chilling requirement for blackberries

    Bare quark stars or naked neutron stars? The case of RX J1856.5-3754

    Get PDF
    In a cool neutron star (T less than or similar to 10(6) K) endowed with a rather highmagnetic field (B greater than or similar to 10(13) G), a phase transition may occur in the outermost layers. As a consequence, the neutron star becomes "bare,'' i.e., no gaseous atmosphere sits on the top of the crust. The surface of a cooling, bare neutron star does not necessarily emit a blackbody spectrum because the emissivity is strongly suppressed at energies below the electron plasma frequency, omega(p). Since omega(p) approximate to 1 keV under the conditions typical of the dense electron gas in the condensate, the emission from a T similar to 100 eV bare neutron star will be substantially depressed with respect to that of a perfect Planckian radiator atmost energies. Here we present a detailed analysis of the emission properties of a bare neutron star. In particular, we derive the surface emissivity for an Fe composition in a range of magnetic fields and temperatures representative of cooling isolated neutron stars, like RX J1856.5 - 3754. We find that the emitted spectrum is strongly dependent on the electron conductivity in the solid surface layers. In the cold electron gas approximation ( no electron-lattice interactions), the spectrum turns out to be a featureless depressed blackbody in the 0.1 - 2 keV band with a steeper low-energy distribution. When damping effects due to collisions between electrons and the ion lattice ( mainly due to electron-phonon interactions) are accounted for, the spectrum is more depressed at low energies and spectral features may be present, depending on the magnetic field strength. Details of the emitted spectrum are found, however, to be strongly dependent on the assumed treatment of the transition from the external vacuum to the metallic surface. The implications of our results for RX J1856.5 - 3754 and other isolated neutron stars are discussed

    An Information-Theoretic Approach to Optimize JWST Observations and Retrievals of Transiting Exoplanet Atmospheres

    Full text link
    We provide an example of an analysis to explore the optimization of observations of transiting hot jupiters with JWST to characterize their atmospheres, based on a simple three-parameter forward model. We construct expansive forward model sets for eleven hot jupiters, ten of which are relatively well-characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.Comment: Accepted to ApJ, 25 pages, 14 figures, 8 table
    • ā€¦
    corecore