1,495 research outputs found

    Circumstellar grain formation

    Get PDF
    Dust formation around cool giant and supergiant stars is examined in terms of grain formulation. Optical properties of small clusters, molecular physics of cluster nucleation and growth, circumstellar mass flows, and their application to alpha Ori are discussed

    The Carriers of the Interstellar Unidentified Infrared Emission Features: Aromatic or Aliphatic?

    Full text link
    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometer, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to coal- or kerogen-like organic nanoparticles with a mixed aromatic-aliphatic structure. However, we show in this Letter that this hypothesis is inconsistent with observations. We estimate the aliphatic fraction of the UIE carriers based on the observed intensities of the 3.4 and 6.85 micrometer emission features by attributing them exclusively to aliphatic C-H stretch and aliphatic C-H deformation vibrational modes, respectively. We derive the fraction of carbon atoms in aliphatic form to be <15%. We conclude that the UIE emitters are predominantly aromatic with aliphatic material at most a minor part of the UIE carriers. The PAH model is consistent with astronomical observations and PAHs dominate the strong UIE bands.Comment: 10 pages, 2 figures, accepted for publication in ApJ Letter

    Structure of Stationary Photodissociation Fronts

    Get PDF
    The structure of stationary photodissociation fronts is revisited. H_2 self- shielding is discussed, including the effects of line overlap. We find that line overlap is important for N(H_2) > 10^{20} cm^{-2}. We compute multiline UV pumping models, and compare these with simple analytic approximations for the effects of self-shielding. The overall fluorescent efficiency of the photodissociation front is obtained for different ratios of chi/n_H (where chi characterizes the intensity of the incident UV) and different dust extinction laws. The dust optical depth tau_{pdr} to the point where 50% of the H is molecular is found to be a simple function of a dimensionless quantity phi_0 depending on chi/n_H, the rate coefficient for H_2 formation on grains, and the UV dust opacity. The fluorescent efficiency of the PDR also depends primarily on phi_0 for chi<3000 and n_H<10^4 cm^{-3}; for stronger radiation fields and higher densities radiative and collisional depopulation of vibrationally-excited levels interferes with the radiative cascade. The emission spectrum from the PDR is essentially independent of the color temperature TcolorT_{color} of the incident UV for T_{color}>10^4K, but shows some sensitivity to the v-J distribution of newly-formed H_2. The 1-0S(1)/2-1S(1) and 2-1S(1)/6-4Q(1) intensity ratios, the ortho/para ratio, and the rotational temperature in the vv=1 and vv=2 levels are computed as functions of the temperature and density, for different values of chi and n_H. We apply our models to the reflection nebula NGC 2023. We are best able to reproduce the observations with models having chi=5000, n_H=10^5 cm^{-3}.Comment: 50 pages, 24 eps figures, uses aaspp4.sty . To appear in Ap.
    corecore