1,942 research outputs found

    Nonlinear Near-Field Microwave Microscope For RF Defect Localization in Superconductors

    Full text link
    Niobium-based Superconducting Radio Frequency (SRF) cavity performance is sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, it is important to develop a new kind of wide bandwidth microwave microscopy with localized and strong RF magnetic fields. By taking advantage of write head technology widely used in the magnetic recording industry, one can obtain ~200 mT RF magnetic fields, which is on the order of the thermodynamic critical field of Nb, on submicron length scales on the surface of the superconductor. We have successfully induced the nonlinear Meissner effect via this magnetic write head probe on a variety of superconductors. This design should have a high spatial resolution and is a promising candidate to find localized defects on bulk Nb surfaces and thin film coatings of interest for accelerator applications.Comment: 4 pages, 6 figures Journal-ref: 2010 Applied Superconductivity Conferenc

    On-the-fly laser machining: a case study for in situ balancing of rotative parts

    Get PDF
    On-the-fly laser machining is defined as a process that aims to generate pockets/patches on target components that are rotated or moved at a constant velocity. Since it is a nonintegrated process (i.e., linear/rotary stage system moving the part is independent of that of the laser), it can be deployed to/into large industrial installations to perform in situ machining, i.e., without the need of disassembly. This allows a high degree of flexibility in its applications (e.g., balancing) and can result in significant cost savings for the user (e.g., no dis(assembly) cost). This paper introduces the concept of on-the-fly laser machining encompassing models for generating user-defined ablated features as well as error budgeting to understand the sources of errors on this highly dynamic process. Additionally, the paper presents laser pulse placement strategies aimed at increasing the surface finish of the targeted component by reducing the area surface roughness that are possible for on-the-fly laser machining. The overall concept was validated by balancing a rotor system through ablation of different pocket shapes by the use of a Yb:YAG pulsed fiber laser. In this respect, first, two different laser pulse placement strategies (square and hexagonal) were introduced in this research and have been validated on Inconel 718 target material; thus, it was concluded that hexagonal pulse placement reduces surface roughness by up to 17% compared to the traditional square laser pulse placement. The concept of on-the-fly laser machining has been validated by ablating two different features (4 × 60 mm and 12 × 4 mm) on a rotative target part at constant speed (100 rpm and 86 rpm) with the scope of being balanced. The mass removal of the ablated features to enable online balancing has been achieved within < 4 mg of the predicted value. Additionally, the error modeling revealed that most of the uncertainties in the dimensions of the feature/pocket originate from the stability of the rotor speed, which led to the conclusion that for the same mass of material to be removed it is advisable to ablate features (pockets) with longer circumferential dimensions, i.e., stretched and shallower pockets rather than compact and deep

    Tool Support for DFD-UML Model-Based Transformations

    Get PDF
    This paper presents a model-based approach that combines the data-flow and object-oriented computing paradigms to model embedded systems. The rationale behind the approach is that both views are important for modelling purposes in embedded systems environments, and thus a combined and integrated usage is not only useful, but also fundamental for developing complex systems. We also show that by using models we were able to implement automated transformations between different views of the system under design. We exemplify the approach with an IPv6 router case study.HPY Research Foundation; CIMO - HH-02-383; Fundação para a Ciência e Tecnologia; Fundo Europeu de Desenvolvimento Regional - Project METHODES: Methodologies and Tools for Developing Complex Real-Time Embedded Systems (POSI/37334/CHS/2001)

    Pheochromocytoma – clinical manifestations, diagnosis and current perioperative management

    Get PDF
    Pheochromocytoma is a neuroendocrine tumor characterized by the excessive production of catecholamines (epinephrine, norepinephrine, and dopamine). The diagnosis is suspected due to hypertensive paroxysms, associated with vegetative phenomena, due to the catecholaminergic hypersecretion. Diagnosis involves biochemical tests that reveal elevated levels of catecholamine metabolites (metanephrine and normetanephrine). Functional imaging, such as 123I-metaiodobenzylguanidine scintigraphy (123I-MIBG), has increased specificity in identifying the catecholamine-producing tumor and its metastases. The gold-standard treatment for patients with pheochromocytoma is represented by the surgical removal of the tumor. Before surgical resection, it is important to optimize blood pressure and intravascular volume in order to avoid negative hemodynamic events

    Improved determination of hadron matrix elements using the variational method

    Full text link
    The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current gA and compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.Comment: 7 pages, 6 figures, talk presented at Lattice 2015, PoS (LATTICE2015
    • …
    corecore