3 research outputs found

    Analyse nano physique pour Ă©tudier l’évolution des pathologies inflammatoires vasculaires et articulaires

    No full text
    Les pathologies inflammatoires vasculaires (PV) et articulaires (PA) reprĂ©sentent aujourd'hui la cause principale de la mortalitĂ© et d’invaliditĂ© dans les pays industrialisĂ©s. Comme les causes exactes favorisant leur apparition restent inconnues, le prĂ©sent travail a proposĂ© de nouvelles mĂ©thodes physiques susceptibles de dĂ©tecter les premiers stades inflammatoires en utilisant des marqueurs spĂ©cifiques et d'Ă©tudier les changements mĂ©caniques et structuraux subis par les tissus vasculaires et le liquide synovial (LS). Les PV peuvent ĂȘtre dĂ©tectĂ©es en utilisant les examens IRM. Afin d’amĂ©liorer l’efficacitĂ© des agents de contraste IRM ceux-ci peuvent ĂȘtre greffĂ©s avec des anticorps. En utilisant la Spectroscopie de Force (SF), un mode de la Microscopie Ă  Force Atomique, l’affinitĂ© Ă©tablie entre un nouvel anticorps, le Fucoidan, et le marqueur spĂ©cifique P-Selectine a Ă©tĂ© analysĂ©. L’étude sur PV a Ă©tĂ© finalisĂ©e en utilisant les mĂȘmes techniques SF en mesure d’indentation afin de connaitre les changements de propriĂ©tĂ©s mĂ©caniques entre les tissus vasculaires sains et pathologiques. Les modifications dans la dynamique du LS dĂ©clenchĂ©es par l'une des molĂ©cules incapables de rĂ©agir selon leur fonctionnalitĂ© peuvent conduire aux PA. Aussi la technique SF a Ă©tĂ© utilisĂ©e pour Ă©tudier le comportement de chaque composant molĂ©culaire du LS. Il a Ă©tĂ© prouvĂ© l’affinitĂ© de ces composants pour les bicouches lipidiques (BL), frĂ©quemment rencontrĂ©es dans le corps humain. L’étude a Ă©tĂ© complĂ©tĂ©e par l’analyse des changements intervenant dans la dynamique des BL en prĂ©sence/absence des composants principaux de LS. Les investigations ont Ă©tĂ© rĂ©alisĂ©es par un test de RĂ©cupĂ©ration de Fluorescence AprĂšs Photoblanchiment. Enfin un test tribologique a Ă©tĂ© conduit pour Ă©tudier la variation du coefficient de frottement entre les BL et les composants du LSAs vascular (VP) and articular (AP) inflammatory pathologies represent nowadays the principal cause of mortality and disability in industrialized countries, the exact causes favoring their occurrence remain still unknown. The present work aimed at proposing new physical methods to detect the early inflammatory stages through recognition of specific markers and to study the structural and mechanical changes undergone by pathological vascular tissues and synovial fluid (SF). Vascular pathologies can be detected through contrasted MRI pictures. In order to improve the capacity of contrast agents to target specific markers they can be antibody-grafted. Atomic Force Microscopy’s mode Force Spectroscopy (AFM-FS) was used to evaluate the affinity between the Fucoidan as a new antibody, and the P-Selectin vascular inflammatory marker, for capacity to target that marker. Further study of VP used the FS techniques for nanoindentation to study changes in mechanical properties between healthy and pathological vascular tissues. Modifications in SF’s dynamics triggered by one of the molecular component not fulfilling its role may lead to AP. To investigate this issue, each of the main SF’s molecular components had their affinity tested versus the ever-present lipid bilayers using AFM-FS techniques. Furthermore changes in lipid bilayers’ dynamics in the presence/absence of the main SF components were analyzed by Fluorescence Recovery After Photobleaching technique. Finally a tribological test was performed to study the variation of the friction coefficient between the lipid bilayers and SF’s main component

    Enhanced Internalization of Nanoparticles Following Ionizing Radiation Leads to Mitotic Catastrophe in MG-63 Human Osteosarcoma Cells

    No full text
    This study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area. Higher nanoparticles internalization in MG-63 cells previously exposed to 1 Gy X-rays was correlated with an early accumulation of cells in G2/M, starting at 12 h after treatment. After 48 h, the application of the combined treatment led to higher cytotoxic effects compared to the individual treatment, with a reduction in the metabolic capacity and unrepaired DNA breaks, whilst a low percent of arrested cells, contributing to the commitment of mitotic catastrophe. NP-DOX showed hemocompatibility and no systemic cytotoxicity, nor histopathological alteration of the main organs
    corecore