63 research outputs found

    Visualization of risk of radiogenic second cancer in the organs and tissues of the human body

    Get PDF
    Background: Radiogenic second cancer is a common late effect in long term cancer survivors. Currently there are few methods or tools available to visually evaluate the spatial distribution of risks of radiogenic late effects in the human body. We developed a risk visualization method and demonstrated it for radiogenic second cancers in tissues and organs of one patient treated with photon volumetric modulated arc therapy and one patient treated with proton craniospinal irradiation. Methods: Treatment plans were generated using radiotherapy treatment planning systems (TPS) and dose information was obtained from TPS. Linear non-threshold risk coefficients for organs at risk of second cancer incidence were taken from the Biological Effects of Ionization Radiation VII report. Alternative risk models including linear exponential model and linear plateau model were also examined. The predicted absolute lifetime risk distributions were visualized together with images of the patient anatomy. Results: The risk distributions of second cancer for the two patients were visually presented. The risk distributions varied with tissue, dose, dose-risk model used, and the risk distribution could be similar to or very different from the dose distribution. Conclusions: Our method provides a convenient way to directly visualize and evaluate the risks of radiogenic second cancer in organs and tissues of the human body. In the future, visual assessment of risk distribution could be an influential determinant for treatment plan scoring

    Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patients with large metal implants?

    Get PDF
    Treatment planning calculations for proton therapy require an accurate knowledge of radiological path length, or range, to the distal edge of the target volume. In most cases, the range may be calculated with sufficient accuracy using kilovoltage (kV) computed tomography (CT) images. However, metal implants such as hip prostheses can cause severe streak artifacts that lead to large uncertainties in proton range. The purposes of this study were to quantify streak-related range errors and to determine if they could be avoided by using artifact-free megavoltage (MV) CT images in treatment planning. Proton treatment plans were prepared for a rigid, heterogeneous phantom and for a prostate cancer patient with a metal hip prosthesis using corrected and uncorrected kVCT images alone, uncorrected MVCT images and a combination of registered MVCT and kVCT images (the hybrid approach). Streak-induced range errors of 5-12 mm were present in the uncorrected kVCT-based patient plan. Correcting the streaks by manually assigning estimated true Hounsfield units improved the range accuracy. In a rigid heterogeneous phantom, the implant-related range uncertainty was estimated at approach, the kVCT images provided good delineation of soft tissues due to high-contrast resolution, and the streak-free MVCT images provided smaller range uncertainties because they did not require artifact correction. © 2008 Institute of Physics and Engineering in Medicine

    Effective dose from stray radiation for a patient receiving proton therapy for liver cancer

    Get PDF
    Because of its advantageous depth-dose relationship, proton radiotherapy is an emerging treatment modality for patients with liver cancer. Although the proton dose distribution conforms to the target, healthy tissues throughout the body receive low doses of stray radiation, particularly neutrons that originate in the treatment unit or in the patient. The aim of this study was to calculate the effective dose from stray radiation and estimate the corresponding risk of second cancer fatality for a patient receiving proton beam therapy for liver cancer. Effective dose from stray radiation was calculated using detailed Monte Carlo simulations of a double-scattering proton therapy treatment unit and a voxelized human phantom. The treatment plan and phantom were based on CT images of an actual adult patient diagnosed with primary hepatocellular carcinoma. For a prescribed dose of 60 Gy to the clinical target volume, the effective dose from stray radiation was 370 mSv; 61% of this dose was from neutrons originating outside of the patient while the remaining 39% was from neutrons originating within the patient. The excess lifetime risk of fatal second cancer corresponding to the total effective dose from stray radiation was 1.2%. The results of this study establish a baseline estimate of the stray radiation dose and corresponding risk for an adult patient undergoing proton radiotherapy for liver cancer and provide new evidence to corroborate the suitability of proton beam therapy for the treatment of liver tumors. © 2009 American Institute of Physics

    Advantages of MCNPX-based lattice tally over mesh tally in high-speed Monte Carlo dose reconstruction for proton radiotherapy

    Get PDF
    Monte Carlo simulations are increasingly used to reconstruct dose distributions in radiotherapy research studies. Many studies have used the MCNPX Monte Carlo code with a mesh tally for dose reconstructions. However, when the number of voxels in the simulated patient anatomy is large, the computation time for a mesh tally can become prohibitively long. The purpose of this work was to test the feasibility of using lattice tally instead of mesh tally for whole-body dose reconstructions. We did this by comparing the dosimetric accuracy and computation time of lattice tallies with those of mesh tallies for craniospinal proton irradiation. The two tally methods generated nearly identical dosimetric results, within 1% in dose and within 1 mm distance-to-agreementfor 99% of the voxels. For a typical craniospinal proton treatment field, simulation speed was 4 to 17 times faster using the lattice tally than using the mesh tally, depending on the numbers of proton histories and voxels. We conclude that the lattice tally is an acceptable substitute for the mesh tally in dose reconstruction, making it a suitable potential candidate for clinical treatment planning

    Ambient dose equivalent versus effective dose for quantifying stray radiation exposures to a patient receiving proton therapy for prostate cancer

    Get PDF
    The purpose of this study was to evaluate the suitability of the quantity ambient dose equivalent H*(10) as a conservative estimate of effective dose E for estimating stray radiation exposures to patients receiving passively scattered proton radiotherapy for cancer of the prostate. H*(10), which is determined from fluence free-in-air, is potentially useful because it is simpler to measure or calculate because it avoids the complexities associated with phantoms or patient anatomy. However, the suitability of H*(10) as a surrogate for E has not been demonstrated for exposures to high-energy neutrons emanating from radiation treatments with proton beams. The suitability was tested by calculating H*(10) and E for a proton treatment using a Monte Carlo model of a double-scattering treatment machine and a computerized anthropomorphic phantom. The calculated E for the simulated treatment was 5.5 mSv/Gy, while the calculated H*(10) at the isocenter was 10 mSv/Gy. A sensitivity analysis revealed that H*(10) conservatively estimated E for the interval of treatment parameters common in proton therapy for prostate cancer. However, sensitivity analysis of a broader interval of parameters suggested that H*(10) may underestimate E for treatments of other sites, particularly those that require large field sizes. Simulations revealed that while E was predominated by neutrons generated in the nozzle, neutrons produced in the patient contributed up to 40% to dose equivalent in near-field organs

    Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the optimal approach to delineating patient-specific internal gross target volumes (IGTV) from four-dimensional (4-D) computed tomography (CT) image data sets used in the planning of radiation treatment for lung cancers.</p> <p>Methods</p> <p>We analyzed 4D-CT image data sets of 27 consecutive patients with non-small-cell lung cancer (stage I: 17, stage III: 10). The IGTV, defined to be the envelope of respiratory motion of the gross tumor volume in each 4D-CT data set was delineated manually using four techniques: (<it>1</it>) combining the gross tumor volume (GTV) contours from ten respiratory phases (IGTV<sub>AllPhases</sub>); (<it>2</it>) combining the GTV contours from two extreme respiratory phases (0% and 50%) (IGTV<sub>2Phases</sub>); (<it>3</it>) defining the GTV contour using the maximum intensity projection (MIP) (IGTV<sub>MIP</sub>); and (<it>4</it>) defining the GTV contour using the MIP with modification based on visual verification of contours in individual respiratory phase (IGTV<sub>MIP-Modified</sub>). Using the IGTV<sub>AllPhases </sub>as the optimum IGTV, we compared volumes, matching indices, and extent of target missing using the IGTVs based on the other three approaches.</p> <p>Results</p> <p>The IGTV<sub>MIP </sub>and IGTV<sub>2Phases </sub>were significantly smaller than the IGTV<sub>AllPhases </sub>(<it>p </it>< 0.006 for stage I and <it>p </it>< 0.002 for stage III). However, the values of the IGTV<sub>MIP-Modified </sub>were close to those determined from IGTV<sub>AllPhases </sub>(<it>p </it>= 0.08). IGTV<sub>MIP-Modified </sub>also matched the best with IGTV<sub>AllPhases</sub>.</p> <p>Conclusion</p> <p>IGTV<sub>MIP </sub>and IGTV<sub>2Phases </sub>underestimate IGTVs. IGTV<sub>MIP-Modified </sub>is recommended to improve IGTV delineation in lung cancer.</p

    Risk-optimized proton therapy to minimize radiogenic second cancers

    Get PDF
    Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimizes the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment planning utilized a combination of a commercial treatment planning system and an in-house risk-optimization algorithm. When normal-tissue dose constraints were incorporated in treatment planning, the risk model that incorporated the effects of fractionation, initiation, inactivation, repopulation and promotion selected a combination of anterior and lateral beams, which lowered the relative risk by 21% for the bladder and 30% for the rectum compared to the lateral-opposed beam arrangement. Other results were found for other risk models
    • …
    corecore