190 research outputs found

    Targeting the cell cycle for cancer therapy

    Get PDF
    Most if not all neoplasias show a directly or indirectly deregulated cell cycle. Targeting its regulatory molecules, the cyclin-dependent kinases, as a therapeutic mode to develop new anticancer drugs, is being currently explored in both academia and pharmaceutical companies. The development of new compounds is being focused on the many features of the cell cycle with promising preclinical data in most fields. Moreover, a few compounds have entered clinical trials with excellent results maintaining the high hopes. Thus, although too early to provide a cell cycle target based new commercial drug, there is no doubt that it will be an excellent source of new anticancer compounds

    Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gliomas are the most common and aggressive primary brain tumors for which unfortunately no effective treatment modalities exist despite advances in molecular biology as the knowledge base to unravel the extremely complex molecular mechanisms of tumorigenesis is limited. In this study an attempt has been made to understand the molecular pathological basis of tumorigenesis which led to an identification of an oncogene, CDC2, and an epigenetic strategy has been evaluated to control the tumorigensis by downregulating this oncogene.</p> <p>Methods</p> <p>Tissue microarrays were utilized to investigate the expression of genes in a large number of tumor samples and to identify overexpressed genes which could be potentially causing tumorigenesis. Retroviral vectors expressing short hairpin RNAs (shRNAs) targeted against CDC2 were designed and transducted into human glioma cell line ex vivo in order to downregulate the expression of CDC2. Real-Time PCR was used to determine the level of CDC2 mRNA. Western Blotting was used to determine the level of expression of CDC2 protein as measure to quantify down regulation of CDC2 expression along with use of flow cytometry to investigate effect of shRNAs on cell cycles and detection of apoptosis. Following ex vivo study, viral particles containing small interfering RNA for CDC2 were subsequently injected into xenogeneic graft tumor of nude mice and the weight of human glioma xenografts, survival and resulting phenotypic changes of target gene were investigated.</p> <p>Results</p> <p>Human glioma tissue microarrays indicated the positive expression rates of CDC2/CyclinB1 with a positive correlation with pathologic grades (r = 0.982, r = 0.959, respectively). Retroviral vectors expressing short hairpin RNAs (shRNAs) against CDC2 caused efficient deletion of CDC2, cellular G2/M arrest concluding in apoptosis and inhibition of proliferation in human glioma cells U251 and SHG-44 cell lines ex vivo. And the viral particles containing small interfering RNA for CDC2 were subsequently injected into subcutaneous and intracranial xenogeneic graft tuomrs of nude mice. For subcutaneous tumors, injection of CDC2-shRNA retroviruses significantly decreased tumor weight and volume compared with control. Immunohistochemistry indicated that CDC2 are negative and TUNEL are positive in tumors treated with recombinant retrovirus. For mice implanted with intracranial gliomas, treatment of CDC2-shRNA retroviruses increased survival times compared with control.</p> <p>Conclusion</p> <p>CDC2 gene plays an important role in the proliferation of human gliomas. Downregulation of CDC2 could potentialy inhibit human gliomas cells growth ex vivo and in vivo. From these results, it was suggested that CDC2 might be a potential target on gene therapy of human gliomas.</p

    PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development. Statement of significance PDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors

    De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus

    Get PDF
    Starfish have been instrumental in many fields of biological and ecological research. Oocytes of Astropecten aranciacus, a common species native to the Mediterranean Sea and the East Atlantic, have long been used as an experimental model to study meiotic maturation, fertilization, intracellular Ca2+ signaling, and cell cycle controls. However, investigation of the underlying molecular mechanisms has often been hampered by the overall lack of DNA or protein sequences for the species. In this study, we have assembled a transcriptome for this species from the oocytes, eggs, zygotes, and early embryos, which are known to have the highest RNA sequence complexity. Annotation of the transcriptome identified over 32,000 transcripts including the ones that encode 13 distinct cyclins and as many cyclin-dependent kinases (CDK), as well as the expected components of intracellular Ca2+ signaling toolkit. Although the mRNAs of cyclin and CDK families did not undergo significant abundance changes through the stages from oocyte to early embryo, as judged by real-time PCR, the transcript encoding Mos, a negative regulator of mitotic cell cycle, was drastically reduced during the period of rapid cleavages. Molecular phylogenetic analysis using the homologous amino acid sequences of cytochrome oxidase subunit I from A. aranciacus and 30 other starfish species indicated that Paxillosida, to which A. aranciacus belongs, is not likely to be the most basal order in Asteroidea. Taken together, the first transcriptome we assembled in this species is expected to enable us to perform comparative studies and to design gene-specific molecular tools with which to tackle long-standing biological questions

    DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Get PDF
    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase
    corecore