18 research outputs found

    Self-initiated butyl acrylate polymerizations in bulk and in solution monitored by in-line techniques

    Get PDF
    High-temperature acrylate polymerizations are technically relevant, but yet not fully understood. In particular the mechanism and the kinetics of the thermal self-initiation is a topic of current research. To obtain more detailed information the conversion dependence of the polymerization rate, rbr, is determined via in-line DSC and FT-NIR spectroscopy for reactions in bulk and in solution at temperatures ranging from 80 to 160 â—¦C. Solution polymerizations revealed that dioxane is associated with the highest rbr, while aromatic solvents result in the lowest values of rbr. Interestingly, rbr for polymerizations in solution with dioxane depends on the actual monomer concentration at a given time in the system, but is not depending on the initial monomer concentration. The overall rate of polymerization in bulk and in solution is well represented by an equation with three or four parameters, respectively, being estimated by multiple linear regression and the temperature as additional parameter

    Kinetic Monte Carlo simulation based detailed understanding of the transfer processes in semi-batch iodine transfer emulsion polymerizations of vinylidene fluoride

    Get PDF
    Semi-batch emulsion polymerizations of vinylidene fluoride (VDF) are reported. The molar mass control is achieved via iodine transfer polymerization (ITP) using IC4F8I as chain transfer agent. Polymerizations carried out at 75 °C and pressures ranging from 10 to 30 bar result in low dispersity polymers with respect to the molar mass distribution (MMD). At higher pressures a significant deviation from the ideal behavior expected for a reversible deactivation transfer polymerization occurs. As identified by kinetic Monte Carlo (kMC) simulations of the activation–deactivation equilibrium, during the initialization period of the chain transfer agent already significant propagation occurs due to the higher pressure, and thus, the higher monomer concentration available. Based on the kMC modeling results, semi-batch emulsion polymerizations were carried out as a two pressure process, which resulted in very good control of the MMD associated with a comparably high polymerization rate

    Simulating Controlled Radical Polymerizations with mcPolymer—A Monte Carlo Approach

    No full text
    Utilizing model calculations may lead to a better understanding of the complex kinetics of the controlled radical polymerization. We developed a universal simulation tool (mcPolymer), which is based on the widely used Monte Carlo simulation technique. This article focuses on the software architecture of the program, including its data management and optimization approaches. We were able to simulate polymer chains as individual objects, allowing us to gain more detailed microstructural information of the polymeric products. For all given examples of controlled radical polymerization (nitroxide mediated radical polymerization (NMRP) homo- and copolymerization, atom transfer radical polymerization (ATRP), reversible addition fragmentation chain transfer polymerization (RAFT)), we present detailed performance analyses demonstrating the influence of the system size, concentrations of reactants, and the peculiarities of data. Different possibilities were exemplarily illustrated for finding an adequate balance between precision, memory consumption, and computation time of the simulation. Due to its flexible software architecture, the application of mcPolymer is not limited to the controlled radical polymerization, but can be adjusted in a straightforward manner to further polymerization models

    Polymer Reaction Engineering meets Explainable Machine Learning

    No full text
    Due to the complicated polymerization technique and statistical composition of the polymer, tailoring its characteristics is a challenging task. Modeling of the polymerizations can contribute to deeper insights into the process. This study applies state-of-the-art machine learning (ML) methods for modeling and reverse engineering of polymerization processes. ML methods (random forest, XGBoost and CatBoost) are trained on data sets generated by an in house developed kinetic Monte Carlo simulator. The applied ML models predict monomer concentration, average molar masses and full molar mass distributions with excellent accuracy (R2 > 0.96). Reverse engineering results delivering the polymerization recipe for a targeted molar mass distribution are less accurate, but still only minor deviations from the targeted molar mass distribution are seen. The influences of the input variables in ML models obtained by explainability methods correspond to the expert expectations

    Preparation of polymer electrolyte membranes via radiation-induced graft copolymerization on poly(ethylene-alt-tetrafluoroethylene) (ETFE) using the crosslinker N,N0-methylenebis(acrylamide)

    Get PDF
    Polymer electrolyte membranes (PEM) prepared by radiation-induced graft copolymerization are investigated. For this purpose, commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films were activated by electron beam treatment and subsequently grafted with the monomers glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and N,N′-methylenebis(acrylamide) (MBAA) as crosslinker. The target is to achieve a high degree of grafting (DG) and high proton conductivity. To evaluate the electrochemical performance, the PEMs were tested in a fuel cell and in a vanadium redox-flow battery (VRFB). High power densities of 134 mW∙cm−2 and 474 mW∙cm−2 were observed, respectively

    Polymer electrolyte membranes prepared by graft copolymerization of 2-acrylamido-2-methylpropane sulfonic acid and acrylic acid on PVDF and ETFE activated by electron beam treatment

    Get PDF
    Polymer electrolyte membranes (PEM) for potential applications in fuel cells or vanadium redox flow batteries were synthesized and characterized. ETFE (poly (ethylene-alttetrafluoroethylene)) and PVDF (poly (vinylidene fluoride)) serving as base materials were activated by electron beam treatment with doses ranging from 50 to 200 kGy and subsequently grafted via radical copolymerization with the functional monomers 2-acrylamido-2-methylpropane sulfonic acid and acrylic acid in aqueous phase. Since protogenic groups are already contained in the monomers, a subsequent sulfonation step is omitted. The mechanical properties were studied via tensile strength measurements. The electrochemical performance of the PEMs was evaluated by electrochemical impedance spectroscopy and fuel cell tests. The proton conductivities and ion exchange capacities are competitive with Nafion 117, the standard material used today
    corecore