13 research outputs found

    Satellite Image Enhancement Using Framelet Transform And Non-Local Means Filter

    Get PDF
    Abstract: Resolution enhancement (RE) schemes suffer from the drawback of losing high frequency contents (which results in blurring). The wavelet-transform-based RE scheme, generates artifacts (due to a shift-variant property). Therefore a framelet-domain approach and non-local means (NLM) filter is proposed for RE of the satellite images. A satellite input image is decomposed by Framelet transform ( FT) to obtain high-frequency subbands. The high-frequency subbands and the low-resolution (LR) input image are interpolated using the Lanczos interpolator. The high frequency subbands are passed through an NLM (despite of its nearly shift invarianc

    Temporal, seasonal and weather effects on cycle volume: an ecological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cycling has the potential to provide health, environmental and economic benefits but the level of cycling is very low in New Zealand and many other countries. Adverse weather is often cited as a reason why people do not cycle. This study investigated temporal and seasonal variability in cycle volume and its association with weather in Auckland, New Zealand's largest city.</p> <p>Methods</p> <p>Two datasets were used: automated cycle count data collected on Tamaki Drive in Auckland by using ZELT Inductive Loop Eco-counters and weather data (gust speed, rain, temperature, sunshine duration) available online from the National Climate Database. Analyses were undertaken using data collected over one year (1 January to 31 December 2009). Normalised cycle volumes were used in correlation and regression analyses to accommodate differences by hour of the day and day of the week and holiday.</p> <p>Results</p> <p>In 2009, 220,043 bicycles were recorded at the site. There were significant differences in mean hourly cycle volumes by hour of the day, day type and month of the year (<it>p </it>< 0.0001). All weather variables significantly influenced hourly and daily cycle volumes (<it>p </it>< 0.0001). The cycle volume increased by 3.2% (hourly) and 2.6% (daily) for 1°C increase in temperature but decreased by 10.6% (hourly) and 1.5% (daily) for 1 mm increase in rainfall and by 1.4% (hourly) and 0.9% (daily) for 1 km/h increase in gust speed. The volume was 26.2% higher in an hour with sunshine compared with no sunshine, and increased by 2.5% for one hour increase in sunshine each day.</p> <p>Conclusions</p> <p>There are temporal and seasonal variations in cycle volume in Auckland and weather significantly influences hour-to-hour and day-to-day variations in cycle volume. Our findings will help inform future cycling promotion activities in Auckland.</p

    Ste20-Related Proline/Alanine-Rich Kinase (SPAK) Regulated Transcriptionally by Hyperosmolarity Is Involved in Intestinal Barrier Function

    Get PDF
    The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-κB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription. Hyperosmolarity increases the ability of NF-κB and Sp1 to bind to their binding sites. Knock-down of either NF-κB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-κB, but not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by hyperosmolarity, plays an important role in epithelial barrier function
    corecore