10 research outputs found

    Using total water footprint of national consumption as sustainable development indicator: A critical review

    Get PDF
    In highly competitive and modern economies, water represents a determinant productive resource and using the water footprint (WF) as a possible indicator in assessing sustainable development is integrated in the overall framework of macroeconomic efficiency analysis. The main aim of this paper is to argue that water footprint could represent a proper indicator in analyzing the sustainable economic development. In this context the territorial distribution of water footprint across the 28 EU countries is analyzed in order to substantiate decisions and achieve sustainable economic development forecasts and strategies at European level. The results have led to the conclusion that, overall, the total water footprint of national consumption in the 28 EU Member States has a very low degree of concentration, therefore, tends towards uniformity. With regard to the three types of water footprint, the main characteristic outcome of the research is the low degree of concentration for gray and green water footprint, while blue water footprint proves a moderate degree of concentration

    The Relationship Between Phenolic Compounds from Diet and Microbiota

    Get PDF
    All multicellular organisms live in a strong bond with the microorganisms from around the world, and the humans are not the exceptions. Human microbiota (a complex bacterial community) contains about 1014 microbial cells, 10 times more than the content of the cells from our body and the microbial genome named microbiome, 1000 more that the human genome. It colonises any surface of the human body, above our skin, in the genitourinary tract, gut and airways. From all this, the gut is the most colonised organ, with an amount of almost 70% of the human microbes. Considering the large size of the gut, compared with a tennis terrain, filled with substances that plays a key, nutritive role for the microbes, polyphenols are micronutrients from our diet, with an emerging role in the modulation of the colonic microbial population composition and activity. Therefore, many studies underline that long-term consumption of diets rich in plants polyphenols offers protection against cancer, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative diseases. This chapter reviews the biological effects of plant polyphenols in the context of relevance to human health, especially considering the food functionality area, together with the complexity of the human microbiota and the bioavailability highly dependent on their intestinal absorption

    Melatonin: A Silent Regulator of the Glucose Homeostasis

    Get PDF
    In the human organism, the circadian regulation of carbohydrates metabolism is essential for the glucose homeostasis and energy balance. Unbalances in glucose and insulin tissue and blood levels have been linked to a variety of metabolic disorders such as obesity, metabolic syndrome, cardiovascular diseases and type 2 diabetes. Melatonin, the pineal hormone, is the key mediator molecule for the integration between the cyclic environment and the circadian distribution of physiological and behavioral processes and for the optimization of energy balance and body weight regulation, events that are crucial for a healthy organism. This chapter reviews the interplay between melatonin modulatory physiological effects, glucose homeostasis and metabolic balance, from the endocrinology perspective. The tremendous effect of melatonin in the regulation of metabolic processes is observed from the chronobiology perspective, considering melatonin as a major synchronizer of the circadian internal order of the physiological processes involved in energy metabolism

    Melatonin - Molecular Biology, Clinical and Pharmaceutical Approaches

    No full text
    Melatonin, the pineal neurohormone, is a pleiotropic molecule acting in the center of the integrative molecular mechanisms of the organism, based on interconnections of the regulatory systems: neural, endocrine, immune, and genetic, conveying into the uniqueness of human architecture. This book provides a systematic and updated overview of melatonin biochemical mechanisms of action, pharmacological features, and clinical uses, clutching the subject with complete details of pharmaceutical formulations designed for different routes of administration and different health issues, aiming at optimal melatonin bioavailability when therapeutically delivered. The book addresses a broad range of audiences, from healthcare professionals, medically and pharmaceutically based, to highly profiled medical specialists and biomedical researchers, helping them to expand their knowledge of the physiological and pathological implications of melatonin and its metabolites

    Chronotherapy Advances in the Management of Chronic Neurological and Cardiovascular Diseases: Complex Interactions of Circadian Rhythm Environmental Inputs, Nutrition and Drug Administration and Their Impact on Human Health

    No full text
    New scientific evidence raises awareness concerning the human-specific interplay among primary environmental conditions, such as the light–dark cycle, activity–rest alternation, nutritional patterns, and their reflection on the physiological and pathological characteristics that are displayed uniquely by every individual. One of the critical aspects in the clinic is to understand the role of circadian rhythms as remarkable modulators of the biological effects of drugs and to aim for an optimal overlapping of the time of administration of medicines with the physiologic release of certain hormones, the time-dependent expression of genes, or the key-regulatory protein synthesis, which are all circadian-driven processes. The pharmacokinetics and pharmacodynamics profiles, as well as the possible drug interactions of neurotropic and cardiovascular agents, are intensely subjected to endogenous circadian rhythms, being essential to identify as much as possible the patients’ multiple risk factors, from age and gender to lifestyle elements imprinted by dietary features, sleep patterns, psychological stress, all the way to various other associated pathological conditions and their own genetic and epigenetic background. This review chapter will highlight the involvement of biological rhythms in physiologic processes and their impact on various pathological mechanisms, and will focus on the nutritional impact on the circadian homeostasis of the organism and neurologic and cardiovascular chronotherapy

    Clinical and Electrophysiological Changes in Pediatric Spinal Muscular Atrophy after 2 Years of Nusinersen Treatment

    No full text
    In the new therapeutic era, disease-modifying treatment (nusinersen) has changed the natural evolution of spinal muscular atrophy (SMA), creating new phenotypes. The main purpose of the retrospective observational study was to explore changes in clinical evolution and electrophysiological data after 2 years of nusinersen treatment. We assessed distal compound motor action potential (CMAP) on the ulnar nerve and motor abilities in 34 SMA patients, aged between 1 and 16 years old, under nusinersen treatment, using specific motor scales for types 1, 2 and 3. The evaluations were performed at treatment initiation and 26 months later. There were registered increased values for CMAP amplitudes after 2 years of nusinersen, significantly correlated with motor function evolution in SMA type 1 patients (p < 0.005, r = 0.667). In total, 45% of non-sitters became sitters and 25% of sitters became walkers. For SMA types 1 and 2, the age at the treatment initialization is highly significant (p < 0.0001) and correlated with treatment yield. A strong negative correlation (r = −0.633) was observed for SMA type 1 and a very strong negative correlation (r = −0.813) for SMA type 2. In treated SMA cases, the distal amplitude of the CMAP and motor functional scales are important prognostic factors, and early diagnosis and treatment are essential for a better outcome

    Current and Future Therapeutic Approaches of Exocrine Pancreatic Insufficiency in Children with Cystic Fibrosis in the Era of Personalized Medicine

    No full text
    This review presents current updates of pancreatic enzyme replacement therapy in children with cystic fibrosis based on literature published in the last decade and some special considerations regarding pancreatic enzyme replacement therapy in the era of new therapies, such as cystic fibrosis transmembrane conductance regulator modulator therapies. Few articles evaluate the efficacy of pancreatic enzyme replacement therapy in the pediatric population, and most studies also included children and adults with cystic fibrosis. Approximately 85% of cystic fibrosis patients have exocrine pancreatic insufficiency and need pancreatic enzyme replacement therapy. Fecal elastase is the most commonly used diagnostic test for exocrine pancreatic insufficiency, although this value can fluctuate over time. While it is used as a diagnostic test, it cannot be used for monitoring the effectiveness of pancreatic enzyme replacement therapy and for adjusting doses. Pancreatic enzyme replacement therapy, the actual treatment for exocrine pancreatic insufficiency, is essential in children with cystic fibrosis to prevent malabsorption and malnutrition and needs to be urgently initiated. This therapy presents many considerations for physicians, patients, and their families, including types and timing of administration, dose monitoring, and therapy failures. Based on clinical trials, pancreatic enzyme replacement therapy is considered effective and well-tolerated in children with cystic fibrosis. An important key point in cystic fibrosis treatment is the recent hypothesis that cystic fibrosis transmembrane conductance regulator modulators could improve pancreatic function, further studies being essential. Pancreatic enzyme replacement therapy is addressed a complication of the disease (exocrine pancreatic insufficiency), while modulators target the defective cystic fibrosis transmembrane conductance regulator protein. Exocrine pancreatic insufficiency in cystic fibrosis remains an active area of research in this era of cystic fibrosis transmembrane conductance regulator modulator therapies. This new therapy could represent an example of personalized medicine in cystic fibrosis patients, with each class of modulators being addressed to patients with specific genetic mutations
    corecore