61 research outputs found

    Molecular Dosimetry of N 2 -Hydroxymethyl-dG DNA Adducts in Rats Exposed to Formaldehyde

    Get PDF
    In this study, both endogenous and exogenous N2-hydroxymethyl-dG adducts in nasal DNA of rats exposed to 0.7, 2, 5.8, 9.1 or 15.2 ppm [13CD2] formaldehyde for 6 h were quantified by a highly sensitive nano-UPLC-MS/MS method. Our data clearly demonstrated that exogenous formaldehyde DNA adducts form in a highly nonlinear fashion, with a 21.7-fold increase in exposure causing a 286-fold increase in exogenous adducts. The ratio of exogenous/endogenous DNA adducts demonstrated that endogenous DNA adducts dominated at low exposures, comprising more than 99%. In contrast, exogenous adducts were not detectable in bone marrow of rats exposed to 15.2 ppm [13CD2] formaldehyde

    N 6 -Formyllysine as a Biomarker of Formaldehyde Exposure: Formation and Loss of N 6 -Formyllysine in Nasal Epithelium in Long-Term, Low-Dose Inhalation Studies in Rats

    Get PDF
    Exposure to both endogenous and exogenous formaldehyde has been established to be carcinogenic, likely by virtue of forming nucleic acid and proteins adducts such as N6-formyllysine. To better assess N6-formyllysine as a biomarker of formaldehyde exposure, we studied accumulation of N6-formyllysine adducts in tissues of rats exposed by inhalation to 2 ppm [13C2H2]-formaldehyde for 7, 14, 21, and 28 days (6 h/day) and investigated adduct loss over a 7-day postexposure period using liquid chromatography-coupled tandem mass spectrometry. Our results showed formation of exogenous adducts in nasal epithelium and to some extent in trachea but not in distant tissues of lung, bone marrow, or white blood cells, with a 2-fold increase over endogenous N6-formyllysine over a 3-week exposure period. Postexposure analyses indicated a biexponential decay of N6-formyllysine in proteins extracted from different cellular compartments, with half-lives of ∼25 and ∼182 h for the fast and slow phases, respectively, in cytoplasmic proteins. These results parallel the behavior of DNA adducts and DNA-protein cross-links, with protein adducts cleared faster than DNA-protein cross-links, and point to the potential utility of N6-formyllysine protein adducts as biomarkers of formaldehyde

    γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90

    Get PDF
    In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day) internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs) in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy) and 90Sr (0 to 49 Gy) were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA damage, cell cycle effects and apoptosis

    Determination of N2-hydroxymethyl-dG Adducts in Nasal Epithelium and Bone Marrow of Non-human Primates following 13CD2-Formaldehyde Inhalation Exposure

    Get PDF
    The presence of endogenous and exogenous N2-hydroxymethyl-dG adducts in DNA from nasal mucosa and bone marrow of cynomolgus macaques exposed to 1.9 and 6.1 ppm of [13CD2]-formaldehyde for 6 hours a day for 2 consecutive days was investigated using a highly sensitive nano-UPLC-MS/MS method with a Limit of Detection of 20 amol. Both exogenous and endogenous adducts were readily detected and quantified in the nasal tissues of both exposure groups, with an exposure dependent increase in exogenous adducts observed. In contrast, only endogenous adducts were detectable in the bone marrow, even though ~10 times more DNA was analyzed

    Effect of 90Sr internal emitter on gene expression in mouse blood

    Get PDF
    Background The radioactive isotope Strontium-90 (90Sr) may be released as a component of fallout from nuclear accidents, or in the event of a radiological incident such as detonation of an improvised nuclear device, and if ingested poses a significant health risk to exposed individuals. In order to better understand the response to 90Sr, using an easily attainable and standard biodosimetry sample fluid, we analyzed the global transcriptomic response of blood cells in an in vivo model system. Results We injected C57BL/6 mice with a solution of 90SrCl2 and followed them over a 30-day period. At days 4, 7, 9, 25 and 30, we collected blood and isolated RNA for microarray analyses. These days corresponded to target doses in a range from 1–5 Gy. We investigated changes in mRNA levels using microarrays, and changes in specific microRNA (miRNA) predicted to be involved in the response using qRT-PCR. We identified 8082 differentially expressed genes in the blood of mice exposed to 90Sr compared with controls. Common biological functions were affected throughout the study, including apoptosis of B and T lymphocytes, and atrophy of lymphoid organs. Cellular functions such as RNA degradation and lipid metabolism were also affected during the study. The broad down regulation of genes observed in our study suggested a potential role for miRNA in gene regulation. We tested candidate miRNAs, mmu-miR-16, mmu-miR-124, mmu-miR-125 and mmu-mir-21; and found that all were induced at the earliest time point, day 4. Conclusions Our study is the first to report the transcriptomic response of blood cells to the internal emitter 90Sr in mouse and a possible role for microRNA in gene regulation after 90Sr exposure. The most dramatic effect was observed on gene expression related to B-cell development and RNA maintenance. These functions were affected by genes that were down regulated throughout the study, suggesting severely compromised antigen response, which may be a result of the deposition of the radioisotope proximal to the hematopoietic compartment in bone

    Formaldehyde and Epigenetic Alterations: MicroRNA Changes in the Nasal Epithelium of Nonhuman Primates

    Get PDF
    Background: Formaldehyde is an air pollutant present in both indoor and outdoor atmospheres. Because of its ubiquitous nature, it is imperative to understand the mechanisms underlying formaldehyde-induced toxicity and carcinogenicity. MicroRNAs (miRNAs) can influence disease caused by environmental exposures, yet miRNAs are understudied in relation to formaldehyde. Our previous investigation demonstrated that formaldehyde exposure in human lung cells caused disruptions in miRNA expression profiles in vitro

    Dosimetry of N 6 -Formyllysine Adducts Following [ 13 C 2 H 2 ]-Formaldehyde Exposures in Rats

    Get PDF
    With formaldehyde as the major source of endogenous N6-formyllysine protein adducts, we quantified endogenous and exogenous N6-formyllysine in the nasal epithelium of rats exposed by inhalation to 0.7, 2, 5.8, and 9.1 ppm [13C2H2]-formaldehyde using liquid chromatography-coupled tandem mass spectrometry. Exogenous N6-formyllysine was detected in the nasal epithelium, with concentration-dependent formation in total as well as fractionated (cytoplasmic, membrane, nuclear) proteins, but was not detected in the lung, liver, or bone marrow. Endogenous adducts dominated at all exposure conditions, with a 6 h 9.1 ppm formaldehyde exposure resulting in one-third of the total load of N6-formyllysine being derived from exogenous sources. The results parallel previous studies of formaldehyde-induced DNA adducts

    Formaldehyde-Associated Changes in microRNAs: Tissue and Temporal Specificity in the Rat Nose, White Blood Cells, and Bone Marrow

    Get PDF
    MicroRNAs (miRNAs) are critical regulators of gene expression, yet much remains unknown regarding their changes resulting from environmental exposures as they influence cellular signaling across various tissues. We set out to investigate miRNA responses to formaldehyde, a critical air pollutant and known carcinogen that disrupts miRNA expression profiles. Rats were exposed by inhalation to either 0 or 2 ppm formaldehyde for 7, 28, or 28 days followed by a 7-day recovery. Genome-wide miRNA expression profiles were assessed within the nasal respiratory epithelium, circulating white blood cells (WBC), and bone marrow (BM). miRNAs showed altered expression in the nose and WBC but not in the BM. Notably in the nose, miR-10b and members of the let-7 family, known nasopharyngeal carcinoma players, showed decreased expression. To integrate miRNA responses with transcriptional changes, genome-wide messenger RNA profiles were assessed in the nose and WBC. Although formaldehyde-induced changes in miRNA and transcript expression were largely tissue specific, pathway analyses revealed an enrichment of immune system/inflammation signaling in the nose and WBC. Specific to the nose was enrichment for apoptosis/proliferation signaling, involving let-7a, let-7c, and let-7f. Across all tissues and time points assessed, miRNAs were predicted to regulate between 7% and 35% of the transcriptional responses and were suggested to play a role in signaling processes including immune/inflammation-related pathways. These data inform our current hypothesis that formaldehyde-induced inflammatory signals originating in the nose may drive WBC effects

    Orally Administered DTPA Penta-Ethyl Ester for the Decorporation of Inhaled 241Am

    Get PDF
    Diethylenetriaminepentaacetic acid (DTPA) is an effective decorporation agent to facilitate the elimination of radionuclides from the body, but its permeability-limited oral bioavailability limits its utility in mass-casualty emergencies. To overcome this limitation, a prodrug strategy using the penta-ethyl ester form of DTPA is under investigation. Pharmacokinetic and biodistribution studies were conducted in rats by orally administering [14C]DTPA penta-ethyl ester, and this prodrug and its hydrolysis products were analyzed as a single entity. Compared to a previous reporting of intravenously administered DTPA, the oral administration of this prodrug resulted in a sustained plasma concentration profile with higher plasma exposure and lower clearance. An assessment of the urine composition revealed that the bioactivation was extensive but incomplete, with no detectable levels of the penta- or tetra-ester forms. Tissue distribution at 12 h was limited, with approximately 73% of the administered dose being associated with the gastrointestinal tract. In the efficacy study, rats were exposed to aerosols of 241Am nitrate before receiving a single oral treatment of the prodrug. The urinary excretion of 241Am was found to be 19% higher than with the control. Consistent with prior reports of DTPA, the prodrug was most effective when the treatment delays were minimized
    • …
    corecore