3,605 research outputs found

    Appreciation of the Machinations of the Blind Watchmaker

    Get PDF
    One danger in using the language of engineering to describe the patterns and operations of the evident products of natural selection is that invoking principles of design runs the risk of invoking a designer. But as we analyze the increasing amount of data on the genome and its organization across a wide array of organisms, we are discovering there are patterns and dynamics reminiscent of designs that we, as imperfect human designers, recognize as serving an engineering purpose, including the purpose to be designable and evolvable. There is no doubt that biological artifacts are the product of Dawkins’ Blind Watchmaker, natural selection. But natural selection has at its heart one of engineering’s most prized principles, optimization. Survival of the fittest, while not directly specifying an objective function that an organism must meet, nonetheless provides a clear figure of merit for long term biological success, persistence of lineages through reproduction of organisms, and is a well-formed if ever-changing specification. The mechanisms which provide the optimization algorithm for an organism to meet the demands of this changeable requirement, composed of a program subject to operations of mutation and interorganismal transfer and inheritance, are themselves under selection. Repeated rounds of this process leads, some argue, to architectures that facilitate evolution itself, the evolving of evolvability

    Union College Flying Dutchman Micro Team

    Get PDF
    SAE Aero Lift is an intercollegiate competition where mechanical, electrical engineering, and computer science students from Union College design and build a remote controlled and autonomous aircraft system to meet specified mission objectives and then compete with their design against engineering students from around the world. The objective of the Micro Class is to design a RC airplane that carries maximal payload with minimal vehicle weight. The plane must also packable into a 12 by 3.5 by 13.5 box, and be able to be assembled to loaded, flight ready, status in fewer than 2 minutes from unboxing. This year\u27s Micro Event team was led by junior students, and involved several sophomores and first year students as well. The Micro event team had intended to travel to Fort Worth, Texas for competition during the first week of April, 2020. Our presentation will consist of an overview of our design and build of the aircraft

    A nomogram to determine required seed air kerma strength in planar 131 Cesium permanent seed implant brachytherapy

    Get PDF
    Purpose: Intraoperatively implanted Cesium-131 ( 131 Cs) permanent seed brachytherapy is used to deliver highly localized re-irradiation in recurrent head and neck cancers. A single planar implant of uniform air kerma strength (AKS) seeds and 10 mm seed-to-seed spacing is used to deliver the prescribed dose to a point 5 mm or 10 mm perpendicular to the center of the implant plane. Nomogram tables to quickly determine the required AKS for rectangular and irregularly shaped implants were created and dosimetrically verified. By eliminating the need for a full treatment planning system plan, nomogram tables allow for fast dose calculation for intraoperative re-planning and for a second check method. Material and methods: TG-43U1 recommended parameters were used to create a point-source model in MATLAB. The dose delivered to the prescription point from a single 1 U seed at each possible location in the implant plane was calculated. Implant tables were verified using an independent seed model in MIM Symphony LDRâ„¢. Implant tables were used to retrospectively determine seed AKS for previous cases: three rectangular and three irregular. Results: For rectangular implants, the percent difference between required seed AKS calculated using MATLAB and MIM was at most 0.6%. For irregular implants, the percent difference between MATLAB and MIM calculations for individual seed locations was within 1.5% with outliers of less than 3.1% at two distal locations (10.6 cm and 8.8 cm), which have minimal dose contribution to the prescription point. The retrospectively determined AKS for patient implants using nomogram tables agreed with previous calculations within 5% for all six cases. Conclusions: Nomogram tables were created to determine required AKS per seed for planar uniform AKS 131 Cs implants. Comparison with the treatment planning system confirms dosimetric accuracy that is acceptable for use as a second check or for dose calculation in cases of intraoperative re-planning

    An Underappreciated Radiation Hazard from High Voltage Electrodes in Vacuum

    Full text link
    The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung X-rays; indeed, this is the basic principle behind the operation of standard X-ray sources. However, in laboratory setups where X-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce X-rays as an unintended hazardous byproduct. Both the level of hazard and the safe operating regimes for HV vacuum electrode systems are not widely appreciated, at least in university laboratories. A reinforced awareness of the radiation hazards associated with vacuum HV setups would be beneficial. We present a case study of a HV vacuum electrode device operated in a university atomic physics laboratory. We describe the characterisation of the observed X-ray radiation, its relation to the observed leakage current in the device, the steps taken to contain and mitigate the radiation hazard, and suggest safety guidelines.Comment: Submitted to Health Physic

    High Profile Systems Illustrating Contradistinctive Aspects of Systems Engineering

    Get PDF
    AbstractMany modern systems have a high degree of dependence on embedded software in order to perform their required functions. Some examples include transportation systems, hand-held devices, and medical equipment, among others. In designing their products, systems engineers typically take a top-down, process-oriented approach, decomposing a complex system into simpler, easier to manage, subsystems; the system requirements can then be allocated and flowed down as necessary to the appropriate subsystems. Software engineers take a more bottom-up, object-oriented approach, using simple building blocks to create a more complex system, and enhancing their existing blocks with new ones where necessary.In many cases, both techniques must be employed together in order to design a successful system. Although it may have been acceptable in the past for simpler systems to view software as a separate subsystem with a fixed set of requirements, greater complexity of modern systems requires a corresponding improvement in working methodology. With the software playing an increasingly pivotal role, systems engineers must become much more familiar with the architecture of the software than previously; Likewise, software engineers need a systems-level view to understand which aspects of the design could be volatile due to new stakeholders (bringing with them new requirements), technology upgrades, and the changing world in general.Systems whose success or failure play out in the public arena provide a rare opportunity to study the factors that contribute to their outcome. Using two such systems, the Denver International Airport baggage handling system and the Apple iPad, this paper will study some best practices that can lead to project success or failure, and show the importance of a rigorous capture and flow down to both hardware and software of the requirements that must be correct from the start, as well as of designing an architecture that can accommodate the inevitable changes to a system.Designing extensible systems with a tolerance for future changes is a key factor in modern complex systems. The baggage handling system failed in part because of a failure to appreciate the central role of software and an apparent lack of a suitable strategy for handling requirement changes. Methods for creating software which is resilient to change have been well studied; however what may be somewhat lacking even to the present day is a broader education of the existing body of knowledge, and how to integrate it with systems engineering methods.The iPad succeeded where many of its predecessors had failed by a successful application of traditional systems engineering techniques and correctly implementing the hardware elements. Coming from companies with experience in software development, the system extensibility was not an issue in this case. However, the designers of the earlier systems seemingly failed to understand the actual market needs, failed to develop a corresponding set of requirements to meet those needs, and failed to translate those requirements into an integrated hardware/software solution

    Single institution implementation of permanent 131Cs interstitial brachytherapy for previously irradiated patients with resectable recurrent head and neck carcinoma

    Get PDF
    Purpose: Permanent interstitial brachytherapy is an appealing treatment modality for patients with locoregional recurrent, resectable head and neck carcinoma (HNC), having previously received radiation. Cesium-131 (131Cs) is a permanent implant brachytherapy isotope, with a low average photon energy of 30 keV and a short half-life of 9.7 days. Exposure to medical staff and family members is low; patient isolation and patient room shielding are not required. This work presents a single institution’s implementation process of utilizing an intraoperative, permanent 131Cs implant for patients with completely resected recurrent HNC. Materials & Methods: Fifteen patients receiving 131Cs permanent seed brachytherapy were included in this analysis. The process of pre-planning, selecting the dose prescription, seed ordering, intraoperative procedures, post-implant planning, and radiation safety protocols are described. Results: Tumor volumes were contoured on the available preoperative PET/CT scans and a pre-implant treatment plan was created using uniform source strength and uniform 1 cm seed spacing. Implants were performed intraoperatively, following tumor resection. In five of the fifteen cases, intraoperative findings necessitated a change from the planned number of seeds and recalculation of the pre-implant plan. The average prescription dose was 56.1 ±6.6 Gy (range, 40-60 Gy). The average seed strength used was 2.2 ±0.2 U (3.5 ±0.3 mCi). Patients returned to a recovery room on a standard surgical floor and remained inpatients, without radiation safety restrictions, based on standard surgical recovery protocols. A post-implant treatment plan was generated based on immediate post-operative CT imaging to verify the seed distribution and confirm delivery of the prescription dose. Patients were provided educational information regarding radiation safety recommendations. Conclusions: Cesium-131 interstitial brachytherapy is feasible and does not pose major radiation safety concerns; it should be considered as a treatment option for previously irradiated patients with recurrent, resectable HNC
    • …
    corecore