26 research outputs found

    Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases?

    Get PDF
    Neurodegenerative disorders show an increasing prevalence in a number of highly developed countries. Often, these diseases require life-long treatment mostly with drugs which are costly and mostly accompanied by more or less serious side-effects. Their heterogeneous manifestation, severity and outcome pose the need for individualised treatment options. There is an intensive search for new strategies not only for treating but also for preventing these diseases. Green tea and green tea extracts seem to be such a promising and safe alternative. However, data regarding the beneficial effects and possible underlying mechanism, specifically in clinical trials, are rare and rather controversial or non-conclusive. This review outlines the existing evidence from preclinical studies (cell and tissue cultures and animal models) and clinical trials regarding preventive and therapeutic effects of epigallcatechin-3-gallate in neurodegenerative diseases and considers antioxidative vs. pro-oxidative properties of the tea catechin important for dosage recommendations

    Treatment of neuromyelitis optica: state-of-the-art and emerging therapies.

    Get PDF
    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date

    History of narcolepsy at Stanford University

    Get PDF

    Ustilago tragopogonis schroet. En u. scorzonerae (Alb. et Schw.) Schroeter

    No full text

    Plantenziektenkundige vraagstukken in verband met de vlascultuur

    No full text
    corecore