35 research outputs found

    A Recurrent Network in the Lateral Amygdala: A Mechanism for Coincidence Detection

    Get PDF
    Synaptic changes at sensory inputs to the dorsal nucleus of the lateral amygdala (LAd) play a key role in the acquisition and storage of associative fear memory. However, neither the temporal nor spatial architecture of the LAd network response to sensory signals is understood. We developed a method for the elucidation of network behavior. Using this approach, temporally patterned polysynaptic recurrent network responses were found in LAd (intra-LA), both in vitro and in vivo, in response to activation of thalamic sensory afferents. Potentiation of thalamic afferents resulted in a depression of intra-LA synaptic activity, indicating a homeostatic response to changes in synaptic strength within the LAd network. Additionally, the latencies of thalamic afferent triggered recurrent network activity within the LAd overlap with known later occurring cortical afferent latencies. Thus, this recurrent network may facilitate temporal coincidence of sensory afferents within LAd during associative learning

    A Mismatch-Based Model for Memory Reconsolidation and Extinction in Attractor Networks

    Get PDF
    The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation

    Subfield-specific immediate early gene expression associated with hippocampal long-term potentiation in vivo.

    No full text
    International audienceIt is not known whether NMDA receptor-dependent long-term potentiation (LTP) is mediated by similar molecular mechanisms in different hippocampal areas. To address this question we have investigated changes in immediate early gene and protein expression in two hippocampal subfields following the induction of LTP in vivo and in vitro. In granule cells of the dentate gyrus, LTP induced in vivo by tetanic stimulation of the perforant path was followed by strong induction of the immediate early genes (IEGs) Zif268, Arc and Homer. The increase in Zif268 mRNA was accompanied by an increase in protein expression. In contrast, we were unable to detect modulation of the IEGs Zif268, Arc, Homer and HB-GAM following induction of LTP by high-frequency stimulation of the commissural projection to CA1 pyramidal cells in vivo. In this pathway, we also failed to detect modulation of Zif268 protein levels. Zif268, Arc and Homer can be modulated in CA1 pyramidal cells approximately twofold after electroshock-induced maximal seizure, which demonstrates potential responsiveness to electrical stimuli. When LTP was induced in vitro neither CA1 pyramidal cells nor granule cells showed an increase in Zif268, Arc or Homer mRNA. However, in the slice preparation, granule cells have a different transcriptional state as basal IEG levels are elevated. These results establish the existence of subfield-specific transcriptional responses to LTP-inducing stimulation in the hippocampus of the intact animal, and demonstrate that in area CA1-enhanced transcription of Zif268, Arc and Homer is not required for the induction of late LTP

    “Everything is not

    No full text
    There is ample evidence that macroscopic animals form geographic clusters termed as zoogeographic realms, whereas distributions of species of microscopic animals are still poorly understood. The common view has been that micrometazoans, thanks to their putatively excellent dispersal abilities, are subject to the “Everything is everywhere but environment selects” hypothesis (EiE). One of such groups, <1 mm in length, are limnoterrestrial water bears (Tardigrada), which can additionally enter cryptobiosis that should further enhance their potential for long distance dispersion (e.g., by wind). However, an increasing number of studies, including the most recent phylogeny of the eutardigrade genus Milnesium, seem to question the general applicability of the EiE hypothesis to tardigrade species. Nevertheless, all Milnesium phylogenies published to date were based on a limited number of populations, which are likely to falsely suggest limited geographic ranges. Thus, in order to test the EiE hypothesis more confidently, we considerably enlarged the Milnesium d ata s et b oth t axonomically and geographically, and analysed it in tandem with climate type and reproductive mode. Additionally, we time-calibrated our phylogeny to align it with major geological events. Our results show that, although cases of long distance dispersal are present, they seem to be rare and mostly ancient. Overall, Milnesium species are restricted to single zoogeographic realms, which suggests that these tardigrades have limited dispersal abilities. Finally, our results also suggest that the breakdown of Gondwana may have influenced the evolutionary history of Milnesium. In conclusion, phylogenetic relationships within the genus seem to be determined mainly by paleogeography

    Dormancy in Freshwater Tardigrades

    No full text
    For more than two centuries, tardigrades have been well known for their ability to undergo dormancy. However, this capability has been well studied mainly in the so-called limnoterrestrial species, i.e., in the species colonizing moist terrestrial habitats, such as mosses, lichens, and leaf litter. In these kinds of substrates, tardigrades are active only when a film of water is available around their body so in this condition they behave like aquatic animals. When the substrate dries or freezes, tardigrades achieve dormancy (quiescence) by entering cryptobiosis, specifically anhydrobiosis or cryobiosis, respectively. In freshwater habitats, both forms of cryptobiosis have been verified only in species able to live both in freshwater and terrestrial habitats. In the truly freshwater (or limnic) species, anhydrobiosis has not been verified, while cryobiosis has been confirmed in a few species. Another dormancy phenomenon bound to diapause is frequent in freshwater species: encystment (sometimes found even in limnoterrestrial species). The cyst state, which involves deep structural and physiological modifications, has been known from the beginning of the past century, but only recently has its morphology and inducing factors been studied in depth. Although data on molecular mechanisms allowing cryptobiosis are available, this information does not exist for encystment
    corecore