47 research outputs found

    FOXM1 binds directly to non-consensus sequences in the human genome.

    Get PDF
    BACKGROUND: The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment. We have investigated the role of direct versus indirect DNA binding in FOXM1 recruitment by performing ChIP-seq with wild-type and DNA binding deficient FOXM1. RESULTS: An in vitro fluorescence polarization assay identified point mutations in the DNA binding domain of FOXM1 that inhibit binding to a FKH consensus sequence. Cell lines expressing either wild-type or DNA binding deficient GFP-tagged FOXM1 were used for genome-wide mapping studies comparing the distribution of the DNA binding deficient protein to the wild-type. This shows that interaction of the FOXM1 DNA binding domain with target DNA is essential for recruitment. Moreover, analysis of the protein interactome of wild-type versus DNA binding deficient FOXM1 shows that the reduced recruitment is not due to inhibition of protein-protein interactions. CONCLUSIONS: A functional DNA binding domain is essential for FOXM1 chromatin recruitment. Even in FOXM1 mutants with almost complete loss of binding, the protein-protein interactions and pattern of phosphorylation are largely unaffected. These results strongly support a model whereby FOXM1 is specifically recruited to chromatin through co-factor interactions by binding directly to non-canonical DNA sequences.We would like to acknowledge the Genomics and bioinformatics core at the CRUK Research Institute for the Illumina sequencing and the Proteomics core for the LC/MS-MS protein analysis for the RIME experiments. We acknowledge the support from The University of Cambridge and Cancer Research UK. The Balasubramanian Laboratory is supported by core funding from Cancer Research UK (C14303/A17197). SB is a Wellcome Trust Principle Investigator.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13059-015-0696-

    Effect of a low-intensity PSA-based screening intervention on prostate cancer mortality: The CAP randomized clinical trial

    No full text
    Importance Prostate cancer screening remains controversial because potential mortality or quality-of-life benefits may be outweighed by harms from overdetection and overtreatment. Objective To evaluate the effect of a single prostate-specific antigen (PSA) screening intervention and standardized diagnostic pathway on prostate cancer–specific mortality. Design, Setting, and Participants The Cluster Randomized Trial of PSA Testing for Prostate Cancer (CAP) included 419 582 men aged 50 to 69 years and was conducted at 573 primary care practices across the United Kingdom. Randomization and recruitment of the practices occurred between 2001 and 2009; patient follow-up ended on March 31, 2016. Intervention An invitation to attend a PSA testing clinic and receive a single PSA test vs standard (unscreened) practice. Main Outcomes and Measures Primary outcome: prostate cancer–specific mortality at a median follow-up of 10 years. Prespecified secondary outcomes: diagnostic cancer stage and Gleason grade (range, 2-10; higher scores indicate a poorer prognosis) of prostate cancers identified, all-cause mortality, and an instrumental variable analysis estimating the causal effect of attending the PSA screening clinic. Results Among 415 357 randomized men (mean [SD] age, 59.0 [5.6] years), 189 386 in the intervention group and 219 439 in the control group were included in the analysis (n = 408 825; 98%). In the intervention group, 75 707 (40%) attended the PSA testing clinic and 67 313 (36%) underwent PSA testing. Of 64 436 with a valid PSA test result, 6857 (11%) had a PSA level between 3 ng/mL and 19.9 ng/mL, of whom 5850 (85%) had a prostate biopsy. After a median follow-up of 10 years, 549 (0.30 per 1000 person-years) died of prostate cancer in the intervention group vs 647 (0.31 per 1000 person-years) in the control group (rate difference, −0.013 per 1000 person-years [95% CI, −0.047 to 0.022]; rate ratio [RR], 0.96 [95% CI, 0.85 to 1.08]; P = .50). The number diagnosed with prostate cancer was higher in the intervention group (n = 8054; 4.3%) than in the control group (n = 7853; 3.6%) (RR, 1.19 [95% CI, 1.14 to 1.25]; P < .001). More prostate cancer tumors with a Gleason grade of 6 or lower were identified in the intervention group (n = 3263/189 386 [1.7%]) than in the control group (n = 2440/219 439 [1.1%]) (difference per 1000 men, 6.11 [95% CI, 5.38 to 6.84]; P < .001). In the analysis of all-cause mortality, there were 25 459 deaths in the intervention group vs 28 306 deaths in the control group (RR, 0.99 [95% CI, 0.94 to 1.03]; P = .49). In the instrumental variable analysis for prostate cancer mortality, the adherence-adjusted causal RR was 0.93 (95% CI, 0.67 to 1.29; P = .66). Conclusions and Relevance Among practices randomized to a single PSA screening intervention vs standard practice without screening, there was no significant difference in prostate cancer mortality after a median follow-up of 10 years but the detection of low-risk prostate cancer cases increased. Although longer-term follow-up is under way, the findings do not support single PSA testing for population-based screening

    Contemporary accuracy of death certificates for coding prostate cancer as a cause of death: Is reliance on death certification good enough? A comparison with blinded review by an independent cause of death evaluation committee.

    No full text
    Accurate cause of death assignment is crucial for prostate cancer epidemiology and trials reporting prostate cancer-specific mortality outcomes. We compared death certificate information with independent cause of death evaluation by an expert committee within a prostate cancer trial (2002-2015). Of 1236 deaths assessed, expert committee evaluation attributed 523 (42%) to prostate cancer, agreeing with death certificate cause of death in 1134 cases (92%, 95% CI: 90%, 93%). The sensitivity of death certificates in identifying prostate cancer deaths as classified by the committee was 91% (95% CI: 89%, 94%); specificity was 92% (95% CI: 90%, 94%). Sensitivity and specificity were lower where death occurred within 1 year of diagnosis, and where there was another primary cancer diagnosis. UK death certificates accurately identify cause of death in men with prostate cancer, supporting their use in routine statistics. Possible differential misattribution by trial arm supports independent evaluation in randomised trials
    corecore