3,706 research outputs found
Fatigue life estimates for helicopter loading spectra
Helicopter loading histories applied to notch metal samples are used as examples, and their fatigue lives are calculated by using a simplified version of the local strain approach. This simplified method has the advantage that it requires knowing the loading history in only the reduced form of ranges and means and number of cycles from the rain-flow cycle counting method. The calculated lives compare favorably with test data
Local and Global Distinguishability in Quantum Interferometry
A statistical distinguishability based on relative entropy characterises the
fitness of quantum states for phase estimation. This criterion is employed in
the context of a Mach-Zehnder interferometer and used to interpolate between
two regimes, of local and global phase distinguishability. The scaling of
distinguishability in these regimes with photon number is explored for various
quantum states. It emerges that local distinguishability is dependent on a
discrepancy between quantum and classical rotational energy. Our analysis
demonstrates that the Heisenberg limit is the true upper limit for local phase
sensitivity. Only the `NOON' states share this bound, but other states exhibit
a better trade-off when comparing local and global phase regimes.Comment: 4 pages, in submission, minor revision
The Vortex Phase Qubit: Generating Arbitrary, Counter-Rotating, Coherent Superpositions in Bose-Einstein Condensates via Optical Angular Momentum Beams
We propose a scheme for generation of arbitrary coherent superposition of
vortex states in Bose-Einstein condensates (BEC) using the orbital angular
momentum (OAM) states of light. We devise a scheme to generate coherent
superpositions of two counter-rotating OAM states of light using known
experimental techniques. We show that a specially designed Raman scheme allows
transfer of the optical vortex superposition state onto an initially
non-rotating BEC. This creates an arbitrary and coherent superposition of a
vortex and anti-vortex pair in the BEC. The ideas presented here could be
extended to generate entangled vortex states, design memories for the OAM
states of light, and perform other quantum information tasks. Applications to
inertial sensing are also discussed.Comment: 4 pages, 4 figures, Revtex4, to be submitted to Phys. Rev. Let
Quantum Clock Synchronization Based on Shared Prior Entanglement
We demonstrate that two spatially separated parties (Alice and Bob) can
utilize shared prior quantum entanglement, and classical communications, to
establish a synchronized pair of atomic clocks. In contrast to classical
synchronization schemes, the accuracy of our protocol is independent of Alice
or Bob's knowledge of their relative locations or of the properties of the
intervening medium.Comment: 4 page
Simulations of atomic trajectories near a dielectric surface
We present a semiclassical model of an atom moving in the evanescent field of
a microtoroidal resonator. Atoms falling through whispering-gallery modes can
achieve strong, coherent coupling with the cavity at distances of approximately
100 nanometers from the surface; in this regime, surface-induced Casmir-Polder
level shifts become significant for atomic motion and detection. Atomic transit
events detected in recent experiments are analyzed with our simulation, which
is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure
General linear-optical quantum state generation scheme: Applications to maximally path-entangled states
We introduce schemes for linear-optical quantum state generation. A quantum
state generator is a device that prepares a desired quantum state using product
inputs from photon sources, linear-optical networks, and postselection using
photon counters. We show that this device can be concisely described in terms
of polynomial equations and unitary constraints. We illustrate the power of
this language by applying the Grobner-basis technique along with the notion of
vacuum extensions to solve the problem of how to construct a quantum state
generator analytically for any desired state, and use methods of convex
optimization to identify bounds to success probabilities. In particular, we
disprove a conjecture concerning the preparation of the maximally
path-entangled |n,0)+|0,n) (NOON) state by providing a counterexample using
these methods, and we derive a new upper bound on the resources required for
NOON-state generation.Comment: 5 pages, 2 figure
Measurement of Photon Statistics with Live Photoreceptor Cells
We analyzed the electrophysiological response of an isolated rod
photoreceptor of Xenopus laevis under stimulation by coherent and
pseudo-thermal light sources. Using the suction electrode technique for single
cell recordings and a fiber optics setup for light delivery allowed
measurements of the major statistical characteristics of the rod response. The
results indicate differences in average responses of rod cells to coherent and
pseudo-thermal light of the same intensity and also differences in
signal-to-noise ratios and second order intensity correlation functions. These
findings should be relevant for interdisciplinary studies seeking applications
of quantum optics in biology.Comment: 6 pages, 7 figure
- …