4,636 research outputs found

    Hybrid Quantum System of a Nanofiber Mode Coupled to Two Chains of Optically Trapped Atoms

    Full text link
    A tapered optical nanofiber simultaneously used to trap and optically interface of cold atoms through evanescent fields constitutes a new and well controllable hybrid quantum system. The atoms are trapped in two parallel 1D optical lattices generated by suitable far blue and red detuned evanescent field modes very close to opposite sides of the nanofiber surface. Collective electronic excitations (excitons) of each of the optical lattices are resonantly coupled to the second lattice forming symmetric and antisymmetric common excitons. In contrast to the inverse cube dependence of the individual atomic dipole-dipole interaction, we analytically find an exponentially decaying coupling strength with distance between the lattices. The resulting symmetric (bright) excitons strongly interact with the resonant nanofiber photons to form fiber polaritons, which can be observed through linear optical spectra. For large enough wave vectors the polariton decay rate to free space is strongly reduced, which should render this system ideal for the realization of long range quantum communication between atomic ensembles.Comment: 9 pages, 9 figure

    Heralded Two-Photon Entanglement from Probabilistic Quantum Logic Operations on Multiple Parametric Down-Conversion Sources

    Get PDF
    An ideal controlled-NOT gate followed by projective measurements can be used to identify specific Bell states of its two input qubits. When the input qubits are each members of independent Bell states, these projective measurements can be used to swap the post-selected entanglement onto the remaining two qubits. Here we apply this strategy to produce heralded two-photon polarization entanglement using Bell states that originate from independent parametric down-conversion sources, and a particular probabilistic controlled-NOT gate that is constructed from linear optical elements. The resulting implementation is closely related to an earlier proposal by Sliwa and Banaszek [quant-ph/0207117], and can be intuitively understood in terms of familiar quantum information protocols. The possibility of producing a ``pseudo-demand'' source of two-photon entanglement by storing and releasing these heralded pairs from independent cyclical quantum memory devices is also discussed.Comment: 5 pages, 4 figures; submitted to IEEE Journal of Selected Topics in Quantum Electronics, special issue on "Quantum Internet Technologies

    The Vortex Phase Qubit: Generating Arbitrary, Counter-Rotating, Coherent Superpositions in Bose-Einstein Condensates via Optical Angular Momentum Beams

    Get PDF
    We propose a scheme for generation of arbitrary coherent superposition of vortex states in Bose-Einstein condensates (BEC) using the orbital angular momentum (OAM) states of light. We devise a scheme to generate coherent superpositions of two counter-rotating OAM states of light using known experimental techniques. We show that a specially designed Raman scheme allows transfer of the optical vortex superposition state onto an initially non-rotating BEC. This creates an arbitrary and coherent superposition of a vortex and anti-vortex pair in the BEC. The ideas presented here could be extended to generate entangled vortex states, design memories for the OAM states of light, and perform other quantum information tasks. Applications to inertial sensing are also discussed.Comment: 4 pages, 4 figures, Revtex4, to be submitted to Phys. Rev. Let

    Local and Global Distinguishability in Quantum Interferometry

    Get PDF
    A statistical distinguishability based on relative entropy characterises the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes, of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the `NOON' states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes.Comment: 4 pages, in submission, minor revision

    Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

    Full text link
    Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices

    Simulations of atomic trajectories near a dielectric surface

    Get PDF
    We present a semiclassical model of an atom moving in the evanescent field of a microtoroidal resonator. Atoms falling through whispering-gallery modes can achieve strong, coherent coupling with the cavity at distances of approximately 100 nanometers from the surface; in this regime, surface-induced Casmir-Polder level shifts become significant for atomic motion and detection. Atomic transit events detected in recent experiments are analyzed with our simulation, which is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure
    • …
    corecore