236 research outputs found

    An Invisible Quantum Tripwire

    Get PDF
    We present here a quantum tripwire, which is a quantum optical interrogation technique capable of detecting an intrusion with very low probability of the tripwire being revealed to the intruder. Our scheme combines interaction-free measurement with the quantum Zeno effect in order to interrogate the presence of the intruder without interaction. The tripwire exploits a curious nonlinear behaviour of the quantum Zeno effect we discovered, which occurs in a lossy system. We also employ a statistical hypothesis testing protocol, allowing us to calculate a confidence level of interaction-free measurement after a given number of trials. As a result, our quantum intruder alert system is robust against photon loss and dephasing under realistic atmospheric conditions and its design minimizes the probabilities of false positives and false negatives as well as the probability of becoming visible to the intruder.Comment: Improved based on reviewers comments; 5 figure

    Quantum interferometric optical lithography:towards arbitrary two-dimensional patterns

    Get PDF
    As demonstrated by Boto et al. [Phys. Rev. Lett. 85, 2733 (2000)], quantum lithography offers an increase in resolution below the diffraction limit. Here, we generalize this procedure in order to create patterns in one and two dimensions. This renders quantum lithography a potentially useful tool in nanotechnology.Comment: 9 pages, 5 figures Revte

    Quantum Clock Synchronization Based on Shared Prior Entanglement

    Get PDF
    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, and classical communications, to establish a synchronized pair of atomic clocks. In contrast to classical synchronization schemes, the accuracy of our protocol is independent of Alice or Bob's knowledge of their relative locations or of the properties of the intervening medium.Comment: 4 page

    Structural diversity in the AdoMet radical enzyme superfamily

    Get PDF
    AdoMet radical enzymes are involved in processes such as cofactor biosynthesis, anaerobic metabolism, and natural product biosynthesis. These enzymes utilize the reductive cleavage of S-adenosylmethionine (AdoMet) to afford l-methionine and a transient 5′-deoxyadenosyl radical, which subsequently generates a substrate radical species. By harnessing radical reactivity, the AdoMet radical enzyme superfamily is responsible for an incredible diversity of chemical transformations. Structural analysis reveals that family members adopt a full or partial Triose-phosphate Isomerase Mutase (TIM) barrel protein fold, containing core motifs responsible for binding a catalytic [4Fe–4S] cluster and AdoMet. Here we evaluate over twenty structures of AdoMet radical enzymes and classify them into two categories: ‘traditional’ and ‘ThiC-like’ (named for the structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (ThiC)). In light of new structural data, we reexamine the ‘traditional’ structural motifs responsible for binding the [4Fe–4S] cluster and AdoMet, and compare and contrast these motifs with the ThiC case. We also review how structural data combine with biochemical, spectroscopic, and computational data to help us understand key features of this enzyme superfamily, such as the energetics, the triggering, and the molecular mechanisms of AdoMet reductive cleavage. This article is part of a Special Issue entitled: Radical SAM Enzymes and Radical Enzymology.Wellcome Trust (London, England) (091162/Z/10/Z)National Science Foundation (U.S.) (NSF Grant MCB-0543833)Howard Hughes Medical Institute (Investigator

    Ending a decade of deception: a valiant failure, a not-so-valiant failure, and a success story

    Full text link
    Prior studies involving two methods, Brooks Parsimony Analysis (BPA) and TreeMap, have found BPA to be the more reliable method. Recent criticisms leveled at these studies argue that the tests were unfairly created and biased in favor of BPA. The authors of a recent critique offered new exemplars to demonstrate flaws in BPA, plus a simple fix to correct the flaws found in TreeMap. A re-evaluation of their exemplars clearly shows that the authors' calculations are incorrect, their understanding of the methods is lacking, and that their simple fix does not work. Additional analyses using TreeMap 2.02 are run to show that TreeMap 2.02, like TreeMap 1.0, cannot adequately deal with widespread parasites, contrary to the claims of its supporters. Furthermore, the exemplars corroborate previous findings that BPA, when calculated correctly, is more reliable than TreeMap1.0 and TreeMap 2.02 and therefore the method of choice in coevolutionary and biogeographic studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75083/1/j.1096-0031.2003.00011.x.pd

    7-Carboxy-7-deazaguanine Synthase: A Radical

    Get PDF
    Radical S-adenosyl-L-methionine (SAM) enzymes are widely distributed and catalyze diverse reactions. SAM binds to the unique iron atom of a site-differentiated [4Fe-4S] cluster and is reductively cleaved to generate a 5'-deoxyadenosyl radical, which initiates turnover. 7-Carboxy-7-deazaguanine (CDG) synthase (QueE) catalyzes a key step in the biosynthesis of 7-deazapurine containing natural products. 6-Carboxypterin (6-CP), an oxidized analogue of the natural substrate 6-carboxy-5,6,7,8-tetrahydropterin (CPH4), is shown to be an alternate substrate for CDG synthase. Under reducing conditions that would promote the reductive cleavage of SAM, 6-CP is turned over to 6-deoxyadenosylpterin (6-dAP), presumably by radical addition of the 5'-deoxyadenosine followed by oxidative decarboxylation to the product. By contrast, in the absence of the strong reductant, dithionite, the carboxylate of 6-CP is esterified to generate 6-carboxypterin-5'-deoxyadenosyl ester (6-CP-dAdo ester). Structural studies with 6-CP and SAM also reveal electron density consistent with the ester product being formed in crystallo. The differential reactivity of 6-CP under reducing and nonreducing conditions highlights the ability of radical SAM enzymes to carry out both polar and radical transformations in the same active site

    Molecular basis of cobalamin-dependent RNA modification

    Get PDF
    Queuosine (Q) was discovered in the wobble position of a transfer RNA (tRNA) 47 years ago, yet the final biosynthetic enzyme responsible for Q-maturation, epoxyqueuosine (oQ) reductase (QueG), was only recently identified. QueG is a cobalamin (Cbl)-dependent, [4Fe-4S] cluster-containing protein that produces the hypermodified nucleoside Q in situ on four tRNAs. To understand how QueG is able to perform epoxide reduction, an unprecedented reaction for a Cbl-dependent enzyme, we have determined a series of high resolution structures of QueG from Bacillus subtilis. Our structure of QueG bound to a tRNA[superscript Tyr] anticodon stem loop shows how this enzyme uses a HEAT-like domain to recognize the appropriate anticodons and position the hypermodified nucleoside into the enzyme active site. We find Q bound directly above the Cbl, consistent with a reaction mechanism that involves the formation of a covalent Cbl-tRNA intermediate. Using protein film electrochemistry, we show that two [4Fe-4S] clusters adjacent to the Cbl have redox potentials in the range expected for Cbl reduction, suggesting how Cbl can be activated for nucleophilic attack on oQ. Together, these structural and electrochemical data inform our understanding of Cbl dependent nucleic acid modification.National Science Foundation (U.S.) (MCB 1122977)National Institutes of Health (U.S.) (GM72623 S01, GM120283, and GM17151

    Structural elements of an NRPS cyclization domain and its intermodule docking domain

    Get PDF
    Epothilones are thiazole-containing natural products with anticancer activity that are biosynthesized by polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) enzymes EpoA–F. A cyclization domain of EpoB (Cy) assembles the thiazole functionality from an acetyl group and L-cysteine via condensation, cyclization, and dehydration. The PKS carrier protein of EpoA contributes the acetyl moiety, guided by a docking domain, whereas an NRPS EpoB carrier protein contributes L-cysteine. To visualize the structure of a cyclization domain with an accompanying docking domain, we solved a 2.03-Å resolution structure of this bidomain EpoB unit, comprising residues M1-Q497 (62 kDa) of the 160-kDa EpoB protein. We find that the N-terminal docking domain is connected to the V-shaped Cy domain by a 20-residue linker but otherwise makes no contacts to Cy. Molecular dynamic simulations and additional crystal structures reveal a high degree of flexibility for this docking domain, emphasizing the modular nature of the components of PKS-NRPS hybrid systems. These structures further reveal two 20-Å-long channels that run from distant sites on the Cy domain to the active site at the core of the enzyme, allowing two carrier proteins to dock with Cy and deliver their substrates simultaneously. Through mutagenesis and activity assays, catalytic residues N335 and D449 have been identified. Surprisingly, these residues do not map to the location of the conserved HHxxxDG motif in the structurally homologous NRPS condensation (C) domain. Thus, although both C and Cy domains have the same basic fold, their active sites appear distinct
    • …
    corecore