8 research outputs found

    Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions.

    Get PDF
    Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A Bayesian analysis of birth pulse effects on the probability of detecting Ebola virus in fruit bats

    No full text
    Abstract Since 1976 various species of Ebolavirus have caused a series of zoonotic outbreaks and public health crises in Africa. Bats have long been hypothesised to function as important hosts for ebolavirus maintenance, how-ever the transmission ecology for these viruses remains poorly understood. Several studies have demon-strated rapid seroconversion for ebolavirus antibodies in young bats, yet paradoxically few PCR studies have confirmed the identity of the circulating viral species causing these seroconversions. The current study presents an age-structured epidemiological model that characterises the effects of seasonal birth pulses on ebolavirus transmission within a colony of African straw-coloured fruit bats ( Eidolon helvum ). Bayesian calibration is performed using previously published serological data collected from Cameroon, and age-structure data from Ghana. The model predicts that annual birth pulses most likely give rise to annual outbreaks, although more complex dynamic patterns – including multi-annual cycles and skip years – may be possible. Weeks 30 to 31 of each year were estimated to be the most likely period for isolating the circulating virus in Cameroon. The probability that a previous PCR campaign failed to detect Ebola virus, assuming that it was circulating, was estimated to be one in two thousand. This raises questions such as (1) what can we actually learn from ebolavirus serology tests performed without positive controls? (2) are current PCR tests sufficiently sensitive? (3) are swab samples really appropriate for ebolavirus extraction? The current results provide important insights for the design of future field studies aiming to extract Ebola viruses from sylvatic hosts, and can contribute to risk assessments concerning the timing of zoonotic outbreaks

    Contemporary epidemiological data of Rift Valley fever virus in humans, mosquitoes and other animal species in Africa: A systematic review and meta‐analysis

    No full text
    Abstract Rift Valley fever (RVF) is a severe zoonotic mosquito‐borne disease that represents an important threat to human and animal health, with major public health and socioeconomic impacts. This disease is endemic throughout many African countries and the Arabian Peninsula. This systematic review with meta‐analysis was conducted to determine the RVF prevalence in humans, mosquitoes and other animal species in Africa. The review also provides contemporary data on RVF case fatality rate (CFR) in humans. In this systematic review with meta‐analysis, a comprehensive literature search was conducted on the PubMed, Embase, Web of Science and Global Index Medicus databases from January 2000 to June 2022 to identify relevant studies. Pooled CFR and prevalence estimates were calculated using the random‐effects model. Subgroup analysis and sensitivity analysis were performed, and the I2‐statistic was used to investigate a potential source of heterogeneity. A total of 205 articles were included in the final analysis. The overall RVF CFR in humans was found to be 27.5% [95% CI = 8.0–52.5]. The overall pooled prevalence was 7.8% [95% CI = 6.2–9.6] in humans and 9.3% [95% CI = 8.1–10.6] in animals, respectively. The RVF prevalence in individual mosquitoes ranged from 0.0% to 25%. Subgroup analysis showed substantial heterogeneity with respect to geographical regions and human categories. The study shows that there is a correspondingly similar prevalence of RVF in human and animals; however, human CFR is much higher than the observed prevalence. The lack of a surveillance programme and the fact that this virus has subclinical circulation in animals and humans could explain these observations. The implementation of a One Health approach for RVF surveillance and control would be of great interest for human and animal health

    Extensive Survey and Analysis of Factors Associated with Presence of Antibodies to Orthoebolaviruses in Bats from West and Central Africa

    No full text
    The seroprevalence to orthoebolaviruses was studied in 9594 bats (5972 frugivorous and 3622 insectivorous) from Cameroon, the Democratic Republic of Congo (DRC) and Guinea, with a Luminex-based serological assay including recombinant antigens of four orthoebolavirus species. Seroprevalence is expressed as a range according to different cut-off calculations. Between 6.1% and 18.9% bat samples reacted with at least one orthoebolavirus antigen; the highest reactivity was seen with Glycoprotein (GP) antigens. Seroprevalence varied per species and was higher in frugivorous than insectivorous bats; 9.1–27.5% versus 1.3–4.6%, respectively. Seroprevalence in male (13.5%) and female (14.4%) bats was only slightly different and was higher in adults (14.9%) versus juveniles (9.4%) (p p < 0.001). Our data suggest orthoebolavirus circulation is highest in young bats. More long-term studies are needed to identify birthing pulses for the different bat species in diverse geographic regions and to increase the chances of detecting viral RNA in order to document the genetic diversity of filoviruses in bats and their pathogenic potential for humans. Frugivorous bats seem more likely to be reservoirs of orthoebolaviruses, but the role of insectivorous bats has also to be further examined

    Coronaviruses Are Abundant and Genetically Diverse in West and Central African Bats, including Viruses Closely Related to Human Coronaviruses

    No full text
    Bats are at the origin of human coronaviruses, either directly or via an intermediate host. We tested swabs from 4597 bats (897 from the Democratic Republic of Congo (DRC), 2191 from Cameroon and 1509 from Guinea) with a broadly reactive PCR in the RdRp region. Coronaviruses were detected in 903 (19.6%) bats and in all species, with more than 25 individuals tested. The highest prevalence was observed in Eidolon helvum (239/733; 39.9%) and Rhinolophus sp. (306/899; 34.1%), followed by Hipposideros sp. (61/291; 20.9%). Frugivorous bats were predominantly infected with beta coronaviruses from the Nobecovirus subgenus (93.8%), in which at least 6 species/genus-specific subclades were observed. In contrast, insectivorous bats were infected with beta-coronaviruses from different subgenera (Nobecovirus (8.5%), Hibecovirus (32.8%), Merbecovirus (0.5%) and Sarbecovirus (57.6%)) and with a high diversity of alpha-coronaviruses. Overall, our study shows a high prevalence and genetic diversity of coronaviruses in bats and illustrates that Rhinolophus bats in Africa are infected at high levels with the Sarbecovirus subgenus, to which SARS-CoV-2 belongs. It is important to characterize in more detail the different coronavirus lineages from bats for their potential to infect human cells, their evolution and to study frequency and modes of contact between humans and bats in Africa

    Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions

    Get PDF
    Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers
    corecore