2,617 research outputs found
Latent Space Model for Multi-Modal Social Data
With the emergence of social networking services, researchers enjoy the
increasing availability of large-scale heterogenous datasets capturing online
user interactions and behaviors. Traditional analysis of techno-social systems
data has focused mainly on describing either the dynamics of social
interactions, or the attributes and behaviors of the users. However,
overwhelming empirical evidence suggests that the two dimensions affect one
another, and therefore they should be jointly modeled and analyzed in a
multi-modal framework. The benefits of such an approach include the ability to
build better predictive models, leveraging social network information as well
as user behavioral signals. To this purpose, here we propose the Constrained
Latent Space Model (CLSM), a generalized framework that combines Mixed
Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA)
incorporating a constraint that forces the latent space to concurrently
describe the multiple data modalities. We derive an efficient inference
algorithm based on Variational Expectation Maximization that has a
computational cost linear in the size of the network, thus making it feasible
to analyze massive social datasets. We validate the proposed framework on two
problems: prediction of social interactions from user attributes and behaviors,
and behavior prediction exploiting network information. We perform experiments
with a variety of multi-modal social systems, spanning location-based social
networks (Gowalla), social media services (Instagram, Orkut), e-commerce and
review sites (Amazon, Ciao), and finally citation networks (Cora). The results
indicate significant improvement in prediction accuracy over state of the art
methods, and demonstrate the flexibility of the proposed approach for
addressing a variety of different learning problems commonly occurring with
multi-modal social data.Comment: 12 pages, 7 figures, 2 table
Cascades: A view from Audience
Cascades on online networks have been a popular subject of study in the past
decade, and there is a considerable literature on phenomena such as diffusion
mechanisms, virality, cascade prediction, and peer network effects. However, a
basic question has received comparatively little attention: how desirable are
cascades on a social media platform from the point of view of users? While
versions of this question have been considered from the perspective of the
producers of cascades, any answer to this question must also take into account
the effect of cascades on their audience. In this work, we seek to fill this
gap by providing a consumer perspective of cascade.
Users on online networks play the dual role of producers and consumers.
First, we perform an empirical study of the interaction of Twitter users with
retweet cascades. We measure how often users observe retweets in their home
timeline, and observe a phenomenon that we term the "Impressions Paradox": the
share of impressions for cascades of size k decays much slower than frequency
of cascades of size k. Thus, the audience for cascades can be quite large even
for rare large cascades. We also measure audience engagement with retweet
cascades in comparison to non-retweeted content. Our results show that cascades
often rival or exceed organic content in engagement received per impression.
This result is perhaps surprising in that consumers didn't opt in to see tweets
from these authors. Furthermore, although cascading content is widely popular,
one would expect it to eventually reach parts of the audience that may not be
interested in the content. Motivated by our findings, we posit a theoretical
model that focuses on the effect of cascades on the audience. Our results on
this model highlight the balance between retweeting as a high-quality content
selection mechanism and the role of network users in filtering irrelevant
content
Game saturation of intersecting families
We consider the following combinatorial game: two players, Fast and Slow,
claim -element subsets of alternately, one at each turn,
such that both players are allowed to pick sets that intersect all previously
claimed subsets. The game ends when there does not exist any unclaimed
-subset that meets all already claimed sets. The score of the game is the
number of sets claimed by the two players, the aim of Fast is to keep the score
as low as possible, while the aim of Slow is to postpone the game's end as long
as possible. The game saturation number is the score of the game when both
players play according to an optimal strategy. To be precise we have to
distinguish two cases depending on which player takes the first move. Let
and denote the score of
the saturation game when both players play according to an optimal strategy and
the game starts with Fast's or Slow's move, respectively. We prove that
holds
Critical Velocity of Vortex Nucleation in Rotating Superfluid 3He-A
We have measured the critical velocity v_c at which 3He-A in a rotating
cylinder becomes unstable against the formation of quantized vortex lines with
continuous (singularity-free) core structure. We find that v_c is distributed
between a maximum and minimum limit, which we ascribe to a dependence on the
texture of the orbital angular momentum l(r) in the cylinder. Slow cool down
through T_c in rotation yields l(r) textures for which the measured v_c's are
in good agreement with the calculated instability of the expected l texture.Comment: 4 pages, 3 figure
The Causal Structure of Emotions in Aristotle: Hylomorphism, Causal Interaction between Mind and Body, and Intentionality
Recently, a strong hylomorphic reading of Aristotelian emotions has been put forward, one that allegedly eliminates the problem of causal interaction between soul and body. Taking the presentation of emotions in de An. I 1 as a starting point and basic thread, but relying also on the discussion of Rh. II, I will argue that this reading only takes into account two of the four causes of emotions, and that, if all four of them
are included into the picture, then a causal interaction of mind and body remains within Aristotelian emotions, independent of how strongly their hylomorphism is understood. Beyond the discussion with this recent reading, the analysis proposed of the fourfold causal structure of emotions is also intended as a hermeneutical starting point for a comprehensive analysis of particular emotions in Aristotle. Through the different causes Aristotle seems to account for many aspects of the complex phenomenon of emotion, including its physiological causes, its mental causes, and its intentional object
A Comparison of Polarization Observables in Electron Scattering from the Proton and Deuteron
Recoil proton polarization observables were measured for both the p(,e) and d(,en reactions at two values of Q using a newly commissioned proton
Focal Plane Polarimeter at the M.I.T.-Bates Linear Accelerator Center. The
hydrogen and deuterium spin-dependent observables and
, the induced polarization and the form factor ratio
were measured under identical kinematics. The deuterium and
hydrogen results are in good agreement with each other and with the plane-wave
impulse approximation (PWIA).Comment: 9 pages, 1 figure; accepted by Phys. Rev. Let
Measurement of the Proton's Neutral Weak Magnetic Form Factor
We report the first measurement of the parity-violating asymmetry in elastic
electron scattering from the proton. The asymmetry depends on the neutral weak
magnetic form factor of the proton which contains new information on the
contribution of strange quark-antiquark pairs to the magnetic moment of the
proton. We obtain the value n.m. at
(GeV/c).Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
Excitons in type-II quantum dots: Finite offsets
Quantum size effects for an exciton attached to a spherical quantum dot are
calculated by a variational approach. The band line-ups are assumed to be
type-II with finite offsets. The dependence of the exciton binding energy upon
the dot radius and the offsets is studied for different sets of electron and
hole effective masses
Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor
We report a new measurement of the parity-violating asymmetry in elastic
electron scattering from the proton at backward scattering angles. This
asymmetry is sensitive to the strange magnetic form factor of the proton as
well as electroweak axial radiative corrections. The new measurement of A=-4.92
+- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The
implications for the strange magnetic form factor are discussed in the context
of theoretical estimates for the axial corrections.Comment: 4 pages, 3 figures, submitted to Physical Review Letters, Sept 199
- …