29 research outputs found

    Analysis of the ionospheric scintillations during 20-21 January 2016 from SANAE by means of the DemoGRAPE scintillation receivers

    Get PDF
    This paper presents ionospheric scintillation data recorded at SANAE in Antarctica during a moderate geomagnetic storm on 20-21 January 2016 which gives evidence of the advantages of the new generation of instrumentation for monitoring ionospheric scintillation. The data was collected as part of the DemoGRAPE project aimed at the demonstration of cutting edge technology for the empirical assessment of the ionospheric delay and ionospheric scintillations in the polar regions which affect the accuracy of satellite navigation

    Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrickˈs Day storm

    Get PDF
    We investigate the geospace response to the 2015 St. Patrickˈs Day storm leveraging on instruments spread over Southeast Asia (SEA), covering a wide longitudinal sector of the low-latitude ionosphere. A regional characterization of the storm is provided, identifying the peculiarities of ionospheric irregularity formation. The novelties of this work are the characterization in a broad longitudinal range and the methodology relying on the integration of data acquired by Global Navigation Satellite System (GNSS) receivers, magnetometers, ionosondes, and Swarm satellites. This work is a legacy of the project EquatoRial Ionosphere Characterization in Asia (ERICA). ERICA aimed to capture the features of both crests of the equatorial ionospheric anomaly (EIA) and trough (EIT) by means of a dedicated measurement campaign. The campaign lasted from March to October 2015 and was able to observe the ionospheric variability causing effects on radio systems, GNSS in particular. The multiinstrumental and multiparametric observations of the region enabled an in-depth investigation of the response to the largest geomagnetic storm of the current solar cycle in a region scarcely reported in literature. Our work discusses the comparison between northern and southern crests of the EIA in the SEA region. The observations recorded positive and negative ionospheric storms, spread F conditions, scintillation enhancement and inhibition, and total electron content variability. The ancillary information on the local magnetic field highlights the variety of ionospheric perturbations during the different storm phases. The combined use of ionospheric bottomside, topside, and integrated information points out how the storm affects the F layer altitude and the consequent enhancement/suppression of scintillations.Published12211–122331A. Geomagnetismo e Paleomagnetismo2A. Fisica dell'alta atmosfera1IT. Reti di monitoraggio e Osservazioni5IT. Osservazioni satellitariJCR Journalope

    Can Motivation Normalize Working Memory and Task Persistence in Children with Attention-Deficit/Hyperactivity Disorder? The Effects of Money and Computer-Gaming

    Get PDF
    Visual-spatial Working Memory (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with- and without ADHD. Studies examining this in executive functions other than WM, show inconsistent results. These inconsistencies may be related to differences in the reinforcement used. The effects of different reinforcers on WM performance were investigated in 30 children with ADHD and 31 non-ADHD controls. A visual-spatial WM task was administered in four reinforcement conditions: Feedback-only, 1 euro, 10 euros, and a computer-game version of the task. In the Feedback-only condition, children with ADHD performed worse on the WM measure than controls. Although incentives significantly improved the WM performance of children with ADHD, even the strongest incentives (10 euros and Gaming) were unable to normalize their performance. Feedback-only provided sufficient reinforcement for controls to reach optimal performance, while children with ADHD required extra reinforcement. Only children with ADHD showed a decrease in performance over time. Importantly, the strongest incentives (10 euros and Gaming) normalized persistence of performance in these children, whereas 1 euro had no such effect. Both executive and motivational deficits give rise to visual-spatial WM deficits in ADHD. Problems with task-persistence in ADHD result from motivational deficits. In ADHD-reinforcement studies and clinical practice (e.g., assessment), reinforcement intensity can be a confounding factor and should be taken into account. Gaming can be a cost-effective way to maximize performance in ADHD

    GNSS-based navigation for lunar descent and landing: performance results

    No full text
    The European Space Agency’s (ESA) interest in lunar exploration has motivated research on systems which could increase the robustness of the navigation architecture of future lunar exploration missions and improve their autonomous operation capabilities. Global Navigation Satellite Systems (GNSS) are currently used in space missions, not only as a navigation sensor but also as a science instrument. Although their use has been generally limited to orbits below the GNSS constellations, recent studies have shown that GNSS-based navigation for GEO and HEO missions is feasible and with relatively good performances, demonstrating its applicability to a wide range of space missions. The LunarGNSS project (funded by ESA and led by DEIMOS Engenharia in cooperation with Politecnico di Torino, Thales Alenia Space – France, DEIMOS Space and Thales Alenia Space – Italy) went far beyond GEO, analysing the feasibility and performance of a navigation solution based on GPS and Galileo for missions to the Moon and focusing on the investigation of the use of weak GNSS signals to provide real-time navigation capabilities to various future lunar assets. An overview of the methodology and tools used in the LunarGNSS project, along with the proposed solution and results, have been presented by the authors in the past. Nonetheless, in the scope of a project extension targeting the increase of the results’ representativeness, the simulator was upgraded and some of the simulations were repeated with more realistic GNSS transmitting antenna patterns. This paper provides an overview of the LunarGNSS project and presents some of the results of the LunarGNSS project’s extension, focusing on the Descent & Landing phase and taking into account the latest results, obtained with more realistic antenna patterns

    First Observations of GNSS Ionospheric Scintillations From DemoGRAPE Project

    Get PDF
    The Istituto Nazionale di Geofisica e Vulcanologia leads an international project funded by the Italian National Program for Antarctic Research, called Demonstrator of Global Navigation Satellite System (GNSS) Research and Application for Polar Environment (DemoGRAPE), in partnership with Politecnico di Torino, Istituto Superiore Mario Boella, and with South African National Space Agency and the Brazilian National Institute of Space Physics, as key collaborators. DemoGRAPE is a new prototype of support for the satellite navigation in Antarctica. Besides the scientific interest, the accuracy of satellite navigation in Antarctica is of paramount importance since there is always the danger that people and vehicles can fall into a crevasse during a snowstorm, when visibility is limited and travel is restricted to following specified routes using satellite navigation systems. The variability of ionospheric delay and ionospheric scintillation are two of the primary factors which affect the accuracy of satellite navigation. The project will provide a demonstrator of cutting edge technology for the empirical assessment of the ionospheric delay and ionospheric scintillations in the polar regions. The scope of the project includes new equipment for the recording and dissemination of GNSS data and products installed at the South African and Brazilian bases in Antarctica. The new equipment will facilitate the exchange of software and derived products via the Cloud computing technology infrastructure. The project portal is accessible at www.demogrape.net. We report the first Global Navigation Satellite System (GNSS) signal scintillations observed in Antarctica
    corecore