143 research outputs found

    DGNSS Cooperative Positioning in Mobile Smart Devices: A Proof of Concept

    Get PDF
    Global Navigation Satellite System (GNSS) constitutes the foremost provider for geo-localization in a growing number of consumer-grade applications and services supporting urban mobility. Therefore, low-cost and ultra-low-cost, embedded GNSS receivers have become ubiquitous in mobile devices such as smartphones and consumer electronics to a large extent. However, limited sky visibility and multipath scattering induced in urban areas hinder positioning and navigation capabilities, thus threatening the quality of position estimates. This work leverages the availability of raw GNSS measurements in ultralow-cost smartphone chipsets and the ubiquitous connectivity provided by modern, low-latency network infrastructures to enable a Cooperative Positioning (CP) framework. A Proof Of Concept is presented that aims at demonstrating the feasibility of a GNSS-only CP among networked smartphones embedding ultra-low-cost GNSS receivers. The test campaign presented in this study assessed the feasibility of a client-server approach over 4G/LTE network connectivity. Results demonstrated an overall service availability above 80%, and an average accuracy improvement over the 40% w.r.t. to the GNSS standalone solution

    TRANSMIT: Training Research and Applications Network to Support the Mitigation of Ionospheric Threats

    Get PDF
    TRANSMIT is an initiative funded by the European Commission through a Marie Curie Initial Training Network (ITN). Main aim of such networks is to improve the career perspectives of researchers who are in the first five years of their research career in both public and private sectors. In particular TRANSMIT will provide a coordinated program of academic and industrial training, focused on atmospheric phenomena that can significantly impair a wide range of systems and applications that are at the core of several activities embedded in our daily life. TRANSMIT deals with the harmful effects of the ionosphere on these systems, which will become increasingly significant as we approach the next solar maximum, predicted for 2013. Main aim of the project is to develop real time integrated state of the art tools to mitigate ionospheric threats to Global Navigation Satellite Systems (GNSS) and several related applications, such as civil aviation, marine navigation and land transportation. The project will provide Europe with the next generation of researchers in this field, equipping them with skills developed through a comprehensive and coordinated training program. Theirs research projects will develop real time integrated state of the art tools to mitigate these ionospheric threats to GNSS and several applications that rely on these systems. The main threat to the reliable and safe operation of GNSS is the variable propagation conditions encountered by GNSS signals as they pass through the ionosphere. At a COST 296 MIERS (Mitigation of Ionospheric Effects on Radio Systems) workshop held at the University of Nottingham in 2008, the establishment of a sophisticated Ionospheric Perturbation Detection and Monitoring (IPDM) network (http://ipdm.nottingham.ac.uk/) was proposed by European experts and supported by the European Space Agency (ESA) as the way forward to deliver the state of the art to protect the range of essential systems vulnerable to these ionospheric threats. Through a set of carefully designed research work packages TRANSMIT will be the enabler of the IPDM network. The goal of TRANSMIT is therefore to provide a concerted training programme including taught courses, research training projects, secondments at the leading European institutions, and a set of network wide events, with summer schools, workshops and a conference, which will arm the researchers of tomorrow with the necessary skills and knowledge to set up and run the proposed service. TRANSMIT will count on an exceptional set of partners, encompassing both academia and end users, including the aerospace and satellite communications sectors, as well as GNSS system designers and service providers, major user operators and receiver manufacturers. TRANSMIT's objectives are: A. Develop new techniques to detect and monitor ionospheric threats, with the introduction of new prediction and forecasting models, mitigation tools and improved system design; B. Advance the physical modeling of the underlying processes associated with the ionospheric plasma environment and the knowledge of its influences on human activity; C. Establish a prototype of a real time system to monitor the ionosphere, capable of providing useful assistance to users, which exploits all available resources and adds value for European services and products; D. Incorporate solutions to this system that respond to all end user needs and that are applicable in all geographical regions of European interest (polar, high and mid-latitudes, equatorial region). TRANSMIT will pave the way to establish in Europe a system capable of mitigating ionospheric threats on GNSS signals in real tim

    A Comparative Study of Different Phase Detrending Algorithms for Scintillation Monitoring

    Get PDF
    Rapid and sudden fluctuations of phase and amplitude in Global Navigation Satellite System (GNSS) signals due to diffraction of the ionosphere phase components when signals passing through small-scale irregularities (less than hundreds meters) are commonly so-called ionospheric scintillation. The aim of the paper is to analyze the implementation and compare the performance of different phase detrending algorithms to improve scintillation monitoring. Three different phase detrending methods, namely, three cascaded second-order high pass filters, six order Butterworth filter conducted by cascading six first-order high pass Butterworth filters, and Fast Iterative Filter (FIF) are considered in this paper. The study exploits real GNSS signals (GPS L1, Galileo E1b) affected by significant phase scintillation effects, collected in early September 2017 at Brazilian Centro de Radioastronomia e Astrofisica Mackenzie (CRAAM) monitoring station and at Adventdalen (Svalbard, Norway) research station. In this study, a software defined radio (SDR) based GNSS receiver is used to process GNSS signals and to implement the aforementioned detrending algorithms

    Software Defined Radio system for GNSS-Refectometry: activities performed at the Politecnico of Turin (Italy)

    Get PDF
    The GNSS signals are an important active source for Earth’s remote sensing in L band. Experiments performed over sea and land surfaces demonstrated the capability of GNSS-Reflected signals (GNSS-R) for remote sensing purposes. Presently, many research groups are focusing their efforts in developing GNSS-R sensors for soil moisture, sea, sea-ice, and snow cover monitoring. Applications like drought monitoring, farm production, irrigation planning, flood protection, fire prevention, and meteorological forecasts can take advantage from retrieved soil moisture content. Detected sea-surface winds could help to identify adverse meteorological conditions far from coastal zones. Sea altimetry measurements could be used to monitor tides and to identify natural hazards (i.e. tsunamis). Sea-ice topographic changes in the Arctic and Antarctic regions and dry ice stratification could be monitored in order to improve polar climatology knowledge. Recently the Remote Sensing Group of Politecnico of Turin and NavSAS laboratory of ISMB (Istituto Superiore Mario Boella) starts the design and implementation of a fully reconfigurable GNSS-R instrument for research activities, following a Software Defined Radio approach. Using this solution, the hardware is reduced to the RF stages only (i.e. antennas, demodulation, sampling) and the processing starts from the IF (Intermediate Frequency) samples of the raw signal. This is a low-cost portable observing system, designed to be easily placed for example also on board small aircrafts (also unmanned). In this sense, the system components were carefully chosen to minimize size and weight of the complete observing system. Together with the system definition, a user interface is started to be developed. Actually the interface allows a quasi real time control of the received signal. The correct estimation of the whole correlation function profile (in range and frequency space) is achieved by keeping the noise level as low as possible and increasing the SNR. Therefore, it is important to optimally process signals even when long - non coherent integration time is necessary. The interface we developed is able to process such signals using FFT (Fast Fourier Transform) based acquisition algorithms. In addition, an optimized procedure is implemented to compensate for a residual code delay, enhancing the detection of weak signals. The interface allows also experimental activities planning, since it shows specular reflection points and isorange lines (inside receiver antenna’s footprint), computed knowing estimated or predicted satellite positions. All the information are georeferenced using UTM (Universal Transverse Mercator) coordinate system and projected on Google© static maps. Thus, this user friendly interface is a helpful tool able to generate all the necessary output for the geophysical applications performed exploiting GNSS-R signals. In order to test instrument and interface, some experimental activities were recently done by placing the instrument on a high cliff to collect some looks from the sea surface and on board an aircraft to collects measurements from soil reflections (rice fields water flooding, soil moisture, altimetry). Another important activity is to adapt our GNSS-R system for space-based measurements in the framework of an educational project which is being carried out by students belonging to the Aerospace and ICT Engineering faculties of Politecnico of Turin. This student project is going to be developed in the framework of an initiative offered by the Education Office of the European Space Agency. We are trying to design and develop on a system level a space-based test bed for an Earth’s Remote Sensing payload to be placed on-board a small Cubesat. This is the P-GRESSION payload (Payload for GNSS REmote Sensing and Signal detectION). It will try to demonstrate the feasibility of existing applications based on observations normally carried out by costly and operative space receivers. Two concepts will be tested. The first one is a twofold GNSS Remote Sensing experiment: 1) the GNSS Radio Occultation experiment, for the profiling of atmospheric refractivity, temperature, water vapour and electron density, which are very important for climate and meteorological purposes, and 2) The GNSS-R experiment for the land and sea surface parameters sensing. It is worth noting that, for both these GNSS-based experiments, global world coverage of observations is assured in all weather conditions. Finally, the current development/improvement of future global GNSS systems will enlarge the number of offered GNSS signals, improving consequently the resolution in time and space of the remote sensing observables. The second concept is based on signal identification. In particular P-GRESSION will acquire signals coming from ground-based radars, in C and/or X frequency bands, both for detection and for calibration purposes. All the experiments will be based on the same Software Defined Radio approach, since after standard radio acquisition with low cost front ends and antennas, all operations will be performed by softwar

    Cooperative Localization Enhancement through GNSS Raw Data in Vehicular Networks

    Get PDF
    The evolution and integration of communication networks and positioning technologies are evolving at a fast pace in the framework of vehicular systems. The mutual dependency of such two capabilities can enable several new cooperative paradigms, whose adoption is however slowed down by the lack of suitable open protocols, especially related to the positioning and navigation domain. In light of this, the paper introduces a novel vehicular message type, namely the Cooperative Enhancement Message (CEM), and an associated open protocol to enable the sharing of Global Navigation Satellite Systems (GNSS) raw measurements among connected vehicles. The proposed CEM aims at extending existent approaches such as Cooperative Awareness Messages (CAM) and Collective Perception Messages (CPM) by complementing their paradigms with a cooperative enhancement of the localization accuracy, precision, and integrity proposed by state-of-the-art solutions. Besides the definition of CEMs and a related protocol, a validation of the approach is proposed through a novel simulation framework. A preliminary analysis of the network performance is presented in the case where CEM and CAM transmissions coexist and are concurrently used to support cooperative vehicle applications

    The LuGRE project: a scientific opportunity to study GNSS signals at the Moon

    Get PDF
    The Lunar GNSS Receiver Experiment (LuGRE) is a joint NASA-Italian Space Agency (ASI) payload on the Firefly Blue Ghost Mission 1 with the goal to demonstrate GNSS-based positioning, navigation, and timing at the Moon. When launched, LuGRE will collect GPS and Galileo measurements in transit between Earth and the Moon, in lunar orbit, and on the lunar surface, and will conduct onboard and ground-based navigation experiments using the collected data. These investigations will be based on the observation of the data collected by a custom development performed by the company Qascom, based on the Qascom QN400-Space GNSS receiver. The receiver is able to provide, PVT solutions, the GNSS raw observables obtained by the real time operation, as well as snapshots of IF digital samples collected by the RF front-end at frequencies L1/E1 and L5/E5. These data will be the input for the different science investigations, that require then the development of proper analysis tools that will be the core of the ground segment during the mission. The current work done by the science team of NASA and ASI, which is supported by a research team at Politecnico di Torino, is planning the data acquisitions during the time windows dedicated to the LuGRE payload in the checkout, transit and surface mission phases

    TRANSMIT: Training Research and Applications Network to Support the Mitigation of Ionospheric Threats

    Get PDF
    TRANSMIT is an initiative funded by the European Commission through a Marie Curie Initial Training Network (ITN). Main aim of such networks is to improve the career perspectives of researchers who are in the first five years of their research career in both public and private sectors. In particular TRANSMIT will provide a coordinated program of academic and industrial training, focused on atmospheric phenomena that can significantly impair a wide range of systems and applications that are at the core of several activities embedded in our daily life. TRANSMIT deals with the harmful effects of the ionosphere on these systems, which will become increasingly significant as we approach the next solar maximum, predicted for 2013. Main aim of the project is to develop real time integrated state of the art tools to mitigate ionospheric threats to Global Navigation Satellite Systems (GNSS) and several related applications, such as civil aviation, marine navigation and land transportation. The project will provide Europe with the next generation of researchers in this field, equipping them with skills developed through a comprehensive and coordinated training program. Theirs research projects will develop real time integrated state of the art tools to mitigate these ionospheric threats to GNSS and several applications that rely on these systems. The main threat to the reliable and safe operation of GNSS is the variable propagation conditions encountered by GNSS signals as they pass through the ionosphere. At a COST 296 MIERS (Mitigation of Ionospheric Effects on Radio Systems) workshop held at the University of Nottingham in 2008, the establishment of a sophisticated Ionospheric Perturbation Detection and Monitoring (IPDM) network (http://ipdm.nottingham.ac.uk/) was proposed by European experts and supported by the European Space Agency (ESA) as the way forward to deliver the state of the art to protect the range of essential systems vulnerable to these ionospheric threats. Through a set of carefully designed research work packages TRANSMIT will be the enabler of the IPDM network. The goal of TRANSMIT is therefore to provide a concerted training programme including taught courses, research training projects, secondments at the leading European institutions, and a set of network wide events, with summer schools, workshops and a conference, which will arm the researchers of tomorrow with the necessary skills and knowledge to set up and run the proposed service. TRANSMIT will count on an exceptional set of partners, encompassing both academia and end users, including the aerospace and satellite communications sectors, as well as GNSS system designers and service providers, major user operators and receiver manufacturers. TRANSMIT’s objectives are: A. Develop new techniques to detect and monitor ionospheric threats, with the introduction of new prediction and forecasting models, mitigation tools and improved system design; B. Advance the physical modeling of the underlying processes associated with the ionospheric plasma environment and the knowledge of its influences on human activity; C. Establish a prototype of a real time system to monitor the ionosphere, capable of providing useful assistance to users, which exploits all available resources and adds value for European services and products; D. Incorporate solutions to this system that respond to all end user needs and that are applicable in all geographical regions of European interest (polar, high and mid-latitudes, equatorial region). TRANSMIT will pave the way to establish in Europe a system capable of mitigating ionospheric threats on GNSS signals in real time

    Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrickˈs Day storm

    Get PDF
    We investigate the geospace response to the 2015 St. Patrickˈs Day storm leveraging on instruments spread over Southeast Asia (SEA), covering a wide longitudinal sector of the low-latitude ionosphere. A regional characterization of the storm is provided, identifying the peculiarities of ionospheric irregularity formation. The novelties of this work are the characterization in a broad longitudinal range and the methodology relying on the integration of data acquired by Global Navigation Satellite System (GNSS) receivers, magnetometers, ionosondes, and Swarm satellites. This work is a legacy of the project EquatoRial Ionosphere Characterization in Asia (ERICA). ERICA aimed to capture the features of both crests of the equatorial ionospheric anomaly (EIA) and trough (EIT) by means of a dedicated measurement campaign. The campaign lasted from March to October 2015 and was able to observe the ionospheric variability causing effects on radio systems, GNSS in particular. The multiinstrumental and multiparametric observations of the region enabled an in-depth investigation of the response to the largest geomagnetic storm of the current solar cycle in a region scarcely reported in literature. Our work discusses the comparison between northern and southern crests of the EIA in the SEA region. The observations recorded positive and negative ionospheric storms, spread F conditions, scintillation enhancement and inhibition, and total electron content variability. The ancillary information on the local magnetic field highlights the variety of ionospheric perturbations during the different storm phases. The combined use of ionospheric bottomside, topside, and integrated information points out how the storm affects the F layer altitude and the consequent enhancement/suppression of scintillations.Published12211–122331A. Geomagnetismo e Paleomagnetismo2A. Fisica dell'alta atmosfera1IT. Reti di monitoraggio e Osservazioni5IT. Osservazioni satellitariJCR Journalope
    • …
    corecore