1,176 research outputs found

    Elemental and mineralogical analyses using geochemical logs from the Cajon Pass Scientific Drillhole, California, and their preliminary comparison with core analyses

    Get PDF
    Estimates of elemental and mineralogical abundances from geochemical logs are compared to preliminary chemical and modal analyses from cores in the Cajon Pass Scientific Drillhole. Accuracies of log-computed weight percent oxide and mineralogy determinations range from 10 to 30%

    Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal

    Full text link
    To elucidate the relationship between a crystal's structure, its thermal conductivity, and its phonon dispersion characteristics, an analysis is conducted on layered diatomic Lennard-Jones crystals with various mass ratios. Lattice dynamics theory and molecular dynamics simulations are used to predict the phonon dispersion curves and the thermal conductivity. The layered structure generates directionally dependent thermal conductivities lower than those predicted by density trends alone. The dispersion characteristics are quantified using a set of novel band diagram metrics, which are used to assess the contributions of acoustic phonons and optical phonons to the thermal conductivity. The thermal conductivity increases as the extent of the acoustic modes increases, and decreases as the extent of the stop bands increases. The sensitivity of the thermal conductivity to the band diagram metrics is highest at low temperatures, where there is less anharmonic scattering, indicating that dispersion plays a more prominent role in thermal transport in that regime. We propose that the dispersion metrics (i) provide an indirect measure of the relative contributions of dispersion and anharmonic scattering to the thermal transport, and (ii) uncouple the standard thermal conductivity structure-property relation to that of structure-dispersion and dispersion-property relations, providing opportunities for better understanding of the underlying physical mechanisms and a potential tool for material design.Comment: 30 pages, 10 figure

    Expanding global distribution of rotavirus serotype G9: detection in Libya, Kenya, and Cuba.

    Get PDF
    Serotype G9 may be the fifth most common human rotavirus serotype, after serotypes G1 to G4. In three cross-sectional studies of childhood diarrhea, we have detected serotype G9 rotaviruses for the first time in Libya, Kenya, and Cuba. Serotype G9 constituted 27% of all rotaviruses identified, emphasizing the reemergence of serotype G9 and suggesting that future human rotavirus vaccines will need to protect against disease caused by this serotype

    Geochemical Logging in the Cajon Pass Drill Hole and Its Application to a New, Oxide, Igneous Rock Classification Scheme

    Get PDF
    A new elemental oxide classification scheme for crystalline rocks is developed and applied to geochemical well logs from the Cajon Pass drill hole. This classification scheme takes advantage of measurements of elements taken by a geochemical logging tool string. It uses K_2O versus SiO_2/Al_2O_3 to distinguish between granites, granodiorites, tonalites, syenites, monzonites, diorites, and gabbros. Oxide measurements from cores are used to calibrate the elemental abundances determined from the well logs. From these logs, a detailed lithologic column of the core is generated. The lithologic column derived from the well log classification scheme is compared with a lithologic column constructed from core samples and well cuttings. In the upper 1295 m of the well, agreement between the two columns is good. Discrepancies occur from 1295 to 2073 m and are believed to be caused by the occurrence of rock types not distinguished by the classification scheme and/or the occurrence of secondary minerals. Despite these discrepancies, the well log-based classification scheme helps to distinguish changes in rock type and shows potential as an aid to the construction of lithologic columns in boreholes of crystalline rocks

    Core functionalization of semi-crystalline polymeric cylindrical nanoparticles using photo-initiated thiol–ene radical reactions

    Get PDF
    Sequential ring-opening and reversible addition–fragmentation chain transfer (RAFT) polymerization was used to form a triblock copolymer of tetrahydropyran acrylate (THPA), 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC) and L-lactide. Concurrent deprotection of the THPA block and crystallization-driven self-assembly (CDSA) was undertaken and allowed for the formation of cylindrical micelles bearing allyl handles in a short outer core segment. These handles were further functionalized by different thiols using photo-initiated thiol–ene radical reactions to demonstrate that the incorporation of an amorphous PMAC block within the core does not disrupt CDSA and can be used to load the cylindrical nanoparticles with cargo

    On the Absorption of X-rays in the Interstellar Medium

    Full text link
    We present an improved model for the absorption of X-rays in the ISM intended for use with data from future X-ray missions with larger effective areas and increased energy resolution such as Chandra and XMM, in the energy range above 100eV. Compared to previous work, our formalism includes recent updates to the photoionization cross section and revised abundances of the interstellar medium, as well as a treatment of interstellar grains and the H2molecule. We review the theoretical and observational motivations behind these updates and provide a subroutine for the X-ray spectral analysis program XSPEC that incorporates our model.Comment: ApJ, in press, for associated software see http://astro.uni-tuebingen.de/nh

    Finite strain Landau theory of high pressure phase transformations

    Full text link
    The properties of materials near structural phase transitions are often successfully described in the framework of Landau theory. While the focus is usually on phase transitions, which are induced by temperature changes approaching a critical temperature T-c, here we will discuss structural phase transformations driven by high hydrostatic pressure, as they are of major importance for understanding processes in the interior of the earth. Since at very high pressures the deformations of a material are generally very large, one needs to apply a fully nonlinear description taking physical as well as geometrical nonlinearities (finite strains) into account. In particular it is necessary to retune conventional Landau theory to describe such phase transitions. In Troster et al (2002 Phys. Rev. Lett. 88 55503) we constructed a Landau-type free energy based on an order parameter part, an order parameter-(finite) strain coupling and a nonlinear elastic term. This model provides an excellent and efficient framework for the systematic study of phase transformations for a wide range of materials up to ultrahigh pressures

    First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3

    Full text link
    We carry out a completely first-principles study of the ferroelectric phase transitions in BaTiO3_3. Our approach takes advantage of two features of these transitions: the structural changes are small, and only low-energy distortions are important. Based on these observations, we make systematically improvable approximations which enable the parameterization of the complicated energy surface. The parameters are determined from first-principles total-energy calculations using ultra-soft pseudopotentials and a preconditioned conjugate-gradient scheme. The resulting effective Hamiltonian is then solved by Monte Carlo simulation. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. We find the transitions to be intermediate between order-disorder and displacive character. We find all three phase transitions to be of first order. The roles of different interactions are discussed.Comment: 33 pages latex file, 9 figure
    • …
    corecore