1,752 research outputs found
Recommended from our members
Using data visualization in creativity workshops: a new tool in the designer's kit
Creativity workshops have proved effective in drawing out unexpected requirements and giving form to participants' novel ideas. Here, we introduce a new addition to the workshop designer's toolkit: interactive data visualization, used as stimuli to prompt insight and inspire creativity. We first describe a pilot study in which we compare the effectiveness of two different styles of data visualization. Here we found that a less ambiguous style was more effective in supporting idea generation. Following this, we report a case study in which we employ data visualization within a service design workshop, where participants gain insights that are later realized in design ideas
Estimating Pasture Intake by Cattle Using Alkanes and a Known Amount of Supplement
The alkane ratio method for estimating pasture intake involves calculating the fecal ratio of plant (endogenous) and exogenous alkanes. This method is effective for sheep, although the delivery mechanism for the exogenous alkanes has presented challenges in cattle (Charmley et al. 2003). Dove et al. (2003) have shown that the relative concentration of components in a mixed diet can be estimated from fecal alkane concentrations using least squares methods. Further, if the amount of one dietary component is known, then the amount of all components, and hence intake, can be determined. In this trial beeswax was added to barley (BWB) giving the mixture a unique alkane composition. Known amounts of this mixture were then fed to cattle grazing three sward types
Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal
To elucidate the relationship between a crystal's structure, its thermal
conductivity, and its phonon dispersion characteristics, an analysis is
conducted on layered diatomic Lennard-Jones crystals with various mass ratios.
Lattice dynamics theory and molecular dynamics simulations are used to predict
the phonon dispersion curves and the thermal conductivity. The layered
structure generates directionally dependent thermal conductivities lower than
those predicted by density trends alone. The dispersion characteristics are
quantified using a set of novel band diagram metrics, which are used to assess
the contributions of acoustic phonons and optical phonons to the thermal
conductivity. The thermal conductivity increases as the extent of the acoustic
modes increases, and decreases as the extent of the stop bands increases. The
sensitivity of the thermal conductivity to the band diagram metrics is highest
at low temperatures, where there is less anharmonic scattering, indicating that
dispersion plays a more prominent role in thermal transport in that regime. We
propose that the dispersion metrics (i) provide an indirect measure of the
relative contributions of dispersion and anharmonic scattering to the thermal
transport, and (ii) uncouple the standard thermal conductivity
structure-property relation to that of structure-dispersion and
dispersion-property relations, providing opportunities for better understanding
of the underlying physical mechanisms and a potential tool for material design.Comment: 30 pages, 10 figure
Low Luminosity States of the Black Hole Candidate GX~339--4. II. Timing Analysis
Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer
(RXTE) observations of the black hole candidate GX 339-4 that were taken during
its hard/low state. On long time scales, the RXTE All Sky Monitor data reveal
evidence of a 240 day periodicity, comparable to timescales expected from
warped, precessing accretion disks. On short timescales all observations save
one show evidence of a persistent f approximately equal to 0.3 Hz QPO. The
broad band (10^{-3}-10^2 Hz) power appears to be dominated by two independent
processes that can be modeled as very broad Lorentzians with Q approximately
less than 1. The coherence function between soft and hard photon variability
shows that if these are truly independent processes, then they are individually
coherent, but they are incoherent with one another. This is evidenced by the
fact that the coherence function between the hard and soft variability is near
unity between 0.005-10 Hz but shows evidence of a dip at f approximately equal
to 1 Hz. This is the region of overlap between the broad Lorentzian fits to the
PSD. Similar to Cyg X-1, the coherence also drops dramatically at frequencies
approximately greater than 10 Hz. Also similar to Cyg X-1, the hard photon
variability is seen to lag the soft photon variability with the lag time
increasing with decreasing Fourier frequency. The magnitude of this time lag
appears to be positively correlated with the flux of GX 339-4. We discuss all
of these observations in light of current theoretical models of both black hole
spectra and temporal variability.Comment: To Appear in the AStrophysical Journa
On the Absorption of X-rays in the Interstellar Medium
We present an improved model for the absorption of X-rays in the ISM intended
for use with data from future X-ray missions with larger effective areas and
increased energy resolution such as Chandra and XMM, in the energy range above
100eV. Compared to previous work, our formalism includes recent updates to the
photoionization cross section and revised abundances of the interstellar
medium, as well as a treatment of interstellar grains and the H2molecule. We
review the theoretical and observational motivations behind these updates and
provide a subroutine for the X-ray spectral analysis program XSPEC that
incorporates our model.Comment: ApJ, in press, for associated software see
http://astro.uni-tuebingen.de/nh
The Escape of Ionizing Photons from OB Associations in Disk Galaxies: Radiation Transfer Through Superbubbles
By solving the time-dependent radiation transfer problem of stellar radiation
through evolving superbubbles within a smoothly varying HI distribution, we
estimate the fraction of ionizing photons emitted by OB associations that
escapes the HI disk of our Galaxy into the halo and intergalactic medium (IGM).
We consider both coeval star-formation and a Gaussian star-formation history
with a time spread sigma_t = 2 Myr. We consider both a uniform H I distribution
and a two-phase (cloud/intercloud) model, with a negligible filling factor of
hot gas. We find that the shells of the expanding superbubbles quickly trap or
attenuate the ionizing flux, so that most of the escaping radiation escapes
shortly after the formation of the superbubble. For the coeval star-formation
history, the total fraction of Lyman Continuum photons that escape both sides
of the disk in the solar vicinity is f_esc approx 0.15 +/- 0.05. For the
Gaussian star formation history, f_esc approx 0.06 +/- 0.03, a value roughly a
factor of two lower than the results of Dove & Shull (1994), where superbubbles
were not considered. For a local production rate of ionizing photons Psi_LyC =
4.95 X 10^7 cm^{-2} s^{-1}, the flux escaping the disk is Phi_LyC approx
(1.5-3.0) X 10^6 cm^{-2} s^{-1} for coeval and Gaussian star formation,
comparable to the flux required to sustain the Reynolds layer.Comment: Revised version (expanded), accepted for publication by ApJ, 38
pages, 8 figures, aasms4.sty and aabib.sty files include
Frenkel line and solubility maximum in supercritical fluids
This research utilised Queen Mary’s MidPlus computational
facilities, supported by QMUL Research-IT and funded
by EPSRC Grant EP/K000128/1. K.T. is grateful to EPSRC,
C.Y. to CSC. V.V.B. is grateful to RSF (14-2200093) for
financial support
Volumetric Ultrasound: A Novel Methodology for 3D Evaluation of Cardiovascular Structure and Function
Three-dimensional reconstructions (3DR) of the heart and great vessels are conventionally formed by scanning a single two-dimensional (2-D) plane, and then combining the data in this scan with data obtained from other scan planes taken at different levels. Missing data between planes are filled in by interpolation. Applications of such 3DR’s from ultrasonic, radionuclide and magnetic resonance images have yielded promising results (1). 3DR’s of the left ventricle have been obtained from cardiac ultrasonic and ultrafast computed tomographic images in our laboratory (2,3). We have also utilized the reconstructed geometries for analysis of mechanical deformation of the ventricular chamber and quantitative assessment of wall motion abnormalities in diseased states (4)
Expanding global distribution of rotavirus serotype G9: detection in Libya, Kenya, and Cuba.
Serotype G9 may be the fifth most common human rotavirus serotype, after serotypes G1 to G4. In three cross-sectional studies of childhood diarrhea, we have detected serotype G9 rotaviruses for the first time in Libya, Kenya, and Cuba. Serotype G9 constituted 27% of all rotaviruses identified, emphasizing the reemergence of serotype G9 and suggesting that future human rotavirus vaccines will need to protect against disease caused by this serotype
- …