11 research outputs found

    Increased Neural Activity in Hazardous Drinkers During High Workload in a Visual Working Memory Task: A Preliminary Assessment Through Event-Related Potentials

    Get PDF
    Despite equated behavioral performance levels, hazardous drinkers generally exhibited increased neural activity while performing simple cognitive tasks compared to light drinkers. Here, 49 participants (25 hazardous and 24 light drinkers) participated in an event-related potentials (ERPs) study while performing an n-back working memory task. In the control zero-back (N0) condition, the subjects were required to press a button when the number “2” or “6” was displayed. In the two-back and three-back (N2; N3) conditions, the subjects had to press a button when the displayed number was identical to the number shown two/three trials earlier. To assess for the impact of alcohol consumption on the updating of working memory processes under various cognitive loads, difference waveforms of “N2 minus N0” and “N3 minus N0” were computed by subtracting waveforms in the N0 condition from waveforms in the N2 and N3 conditions, for the light and the hazardous drinkers. Three main ERP components were noted for both groups: a P200/N200 complex, a P300 component, and an N400/P600 activity. The results show that, to perform the task at the same level as the light drinkers, the hazardous drinkers exhibited larger amplitude differences, mainly around the P300 and P600 components. These data may be considered, at the preventive level, as vulnerability factors for developing adult substance use disorders, and they stress the importance, at a clinical level, to consider such working memory processes in the management of alcohol dependence

    Addiction: Brain and Cognitive Stimulation for Better Cognitive Control and Far Beyond

    Get PDF
    Addiction behaviors are characterized by conditioned responses responsible for craving and automatic actions as well as disturbances within the supervisory network, one of the key elements of which is the inhibition of prepotent response. Interventions such as brain stimulation and cognitive training targeting this imbalanced system can potentially be a positive adjunct to treatment as usual. The relevance of several invasive and noninvasive brain stimulation techniques in the context of addiction as well as several cognitive training protocols is reviewed. By reducing cue-induced craving and modifying the pattern of action, memory associations, and attention biases, these interventions produced significant but still limited clinical effects. A new refined definition of response inhibition, including automatic inhibition of response and a more consistent approach to cue exposure capitalizing on the phase of reconsolidation of pre-activated emotional memories, all associated with brain and cognitive stimulation, opens new avenues for clinical research

    Comparison of Neural Correlates of Reactive Inhibition in Cocaine, Heroin, and Polydrug Users through a Contextual Go/No-Go Task Using Event-Related Potentials

    No full text
    Recent global data indicates a worldwide increase in polydrug use associated with a shift from recreational to productive habits of consumption. Such non-responsible abuse of substances (alcohol, cocaine, heroin, etc.) is likely to lead to addictive disorders that are characterized by various neuropsychopharmacological effects. A main cognitive function involved in the onset and long-term maintenance of addiction is reactive inhibition, i.e. the ability to withhold a prepotent motor dominant response. In the present study, 63 (poly)drug user patients who were undergoing a detoxification program, in addition to 19 healthy controls matched for gender, age, and education, were subjected to a “contextual Go/No-Go task” with concomitant electroencephalography. Stimuli were superimposed on three contextual backgrounds: control (black screen), drug-unrelated (neutral pictures), or drug-related (pictures related to drug consumption). Of these patients, 23 were cocaine users (CU), 21 were heroin users (HU), and 19 were polydrug users (PDU). The main results showed that (1) at the behavioral level, more commission errors occurred with the PDU patients compared to the healthy controls; (2) at the neurophysiological level, specific alterations were found on classical event-related potentials that index reactive inhibition. Indeed, the higher rate of errors in the PDU group was subtended by both reduced amplitude and latency on the ∆N2 component and increased ∆P3 latency compared to controls. These data clearly suggest a more deleterious impact of polydrug use on inhibitory functions. In addition, our results provide evidence of reduced ERN amplitude in cocaine users, suggesting that impaired performance monitoring and error-processing may support impaired awareness, thereby preventing these patients from changing their behaviors.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Preventing relapse in alcohol disorder with EEG-neurofeedback as a neuromodulation technique: A review and new insights regarding its application

    No full text
    Alcohol Use Disorder (AUD) has a disconcertingly high relapse rate (70–80% within a year following withdrawal). Preventing relapse or minimizing its extent is hence a challenging goal for long-term successful management of AUD. New perspectives that rely on diverse neuromodulation tools have been developed in this regard as care supports. This paper focuses on electroencephalogram-neurofeedback (EEG-NF), which is a tool that has experienced renewed interest in both clinical and research areas. We review the literature on EEG-based neurofeedback studies investigating the efficacy in AUD and including at least 10 neurofeedback training sessions. As neurofeedback is a form of biofeedback in which a measure of brain activity is provided as feedback in real-time to a subject, the high degree of temporal resolution of the EEG interface supports optimal learning. By offering a wide range of brain oscillation targets (alpha, beta, theta, delta, gamma, and SMR) the EEG-NF procedure increases the scope of possible investigations through a multitude of experimental protocols that can be considered to reinforce or inhibit specific forms of EEG activity associated with AUD-related cognitive impairments. The present review provides an overview of the EEG-NF protocols that have been used in AUD and it highlights the current paucity of robust evidence. Within this framework, this review presents the arguments in favor of the application of EEG-NF as an add-on tool in the management of alcohol disorders to enhance the cognitive abilities required to maintain abstinence more specifically, with a focus on inhibition and attentional skills.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Transcranial Direct Current Stimulation Combined With Cognitive Training Induces Response Inhibition Facilitation Through Distinct Neural Responses According to the Stimulation Site: A Follow-up Event-Related Potentials Study

    No full text
    Objective: We investigated whether the mid-term impact (1 week posttraining) of a “combined cognitive rehabilitation (CRP)/transcranial direct current stimulation (tDCS) program” on the performance of a Go/No-go task was enhanced compared with isolated CRP and whether it varied according to the stimulation site (right inferior frontal gyrus [rIFG] vs right dorsolateral prefrontal cortex [rDLPFC]). Methods: A total of 150 healthy participants were assigned to (1) an Inhibition Training (IT) group, (2) a group receiving active tDCS over the rIFG in combination with IT (IT + IF), (3) a group receiving active tDCS over the rDLPFC in combination with IT (IT + DL), (4) a group receiving IT with sham tDCS (ITsham), and (5) a No-Training (NT) group to control for test-retest effects. Each group undertook 3 sessions of a Go/No-go task concomitant with the recording of event-related potentials (T0, before training; T1, at the end of a 4-day training session [20 minutes each day]; T2, 1 week after T1). Results: With the exception of the NT participants, all the groups exhibited improved performances at T2. The IT + DL group exhibited the best improvement profile, indexed by faster response times (RTs) (T0 > T1 = T2), with a reduced rate of errors at the posttraining sessions compared with both T0 and T1. This “inhibitory learning effect” was neurophysiologically indexed by shorter No-go N2d latencies and enhanced No-go P3d amplitudes. Conclusion: CRP combined with active tDCS over the rDLPFC appears to be optimal for boosting long-term (one week) inhibitory skills as it induced specific and robust neural changes.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore