14 research outputs found

    Hypothesis exploration with visualization of variance.

    Get PDF
    BackgroundThe Consortium for Neuropsychiatric Phenomics (CNP) at UCLA was an investigation into the biological bases of traits such as memory and response inhibition phenotypes-to explore whether they are linked to syndromes including ADHD, Bipolar disorder, and Schizophrenia. An aim of the consortium was in moving from traditional categorical approaches for psychiatric syndromes towards more quantitative approaches based on large-scale analysis of the space of human variation. It represented an application of phenomics-wide-scale, systematic study of phenotypes-to neuropsychiatry research.ResultsThis paper reports on a system for exploration of hypotheses in data obtained from the LA2K, LA3C, and LA5C studies in CNP. ViVA is a system for exploratory data analysis using novel mathematical models and methods for visualization of variance. An example of these methods is called VISOVA, a combination of visualization and analysis of variance, with the flavor of exploration associated with ANOVA in biomedical hypothesis generation. It permits visual identification of phenotype profiles-patterns of values across phenotypes-that characterize groups. Visualization enables screening and refinement of hypotheses about variance structure of sets of phenotypes.ConclusionsThe ViVA system was designed for exploration of neuropsychiatric hypotheses by interdisciplinary teams. Automated visualization in ViVA supports 'natural selection' on a pool of hypotheses, and permits deeper understanding of the statistical architecture of the data. Large-scale perspective of this kind could lead to better neuropsychiatric diagnostics

    Generation of a CRF1-Cre transgenic rat and the role of central amygdala CRF1 cells in nociception and anxiety-like behavior

    Get PDF
    Corticotropin-releasing factor type-1 (CRF1) receptors are critical to stress responses because they allow neurons to respond to CRF released in response to stress. Our understanding of the precise role of CRF1-expressing neuronal populations in CRF-mediated behaviors has been largely limited to mouse experiments due to the lack of genetic tools available to selectively visualize and manipulate CRF1+ cells in rats. Here, we describe the generation and validation of a transgenic CRF1-Cre-tdTomato rat, which expresses a bicistronic iCre-2A-tdTomato transgene directed by 200kb of promoter and enhancer sequence surrounding the Crhr1 cDNA present within a BAC clone, that has been transgenically inserted into the rat genome. We report that Crhr1 and Cre mRNA expression are highly colocalized in CRF1-Cre-tdTomato rats within both the central amygdala (CeA), composed of mostly GABAergic neurons, and in the basolateral amygdala (BLA), composed of mostly glutamatergic neurons. In the CeA, membrane properties, inhibitory synaptic transmission, and responses to CRF bath application in tdTomato+ neurons are similar to those previously reported in GFP+ cells in CRFR1-GFP mice. We show that stimulatory DREADD receptors can be selectively targeted to CeA CRF1+ cells via virally delivered Cre-dependent transgenes, that transfected Cre/tdTomato+ cells are activated by clozapine-n-oxide in vitro and in vivo, and that activation of these cells in vivo increases anxiety-like behavior and nocifensive responses. Outside the amygdala, we show that Cre-tdTomato is expressed in several brain areas across the rostrocaudal axis of the CRF1-Cre-tdTomato rat brain, and that the expression pattern of Cre-tdTomato cells is similar to the known expression pattern of CRF1 cells. Given the accuracy of expression in the CRF1-Cre rat, modern genetic techniques used to investigate the anatomy, physiology, and behavioral function of CRF1+ neurons and circuits can now be performed in assays that require the use of rats as the model organism

    Spironolactone as a potential new pharmacotherapy for alcohol use disorder: convergent evidence from rodent and human studies.

    No full text
    Evidence suggests that spironolactone, a nonselective mineralocorticoid receptor (MR) antagonist, modulates alcohol seeking and consumption. Therefore, spironolactone may represent a novel pharmacotherapy for alcohol use disorder (AUD). In this study, we tested the effects of spironolactone in a mouse model of alcohol drinking (drinking-in-the-dark) and in a rat model of alcohol dependence (vapor exposure). We also investigated the association between spironolactone receipt for at least 60 continuous days and change in self-reported alcohol consumption, using the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C), in a pharmacoepidemiologic cohort study in the largest integrated healthcare system in the US. Spironolactone dose-dependently reduced the intake of sweetened or unsweetened alcohol solutions in male and female mice. No effects of spironolactone were observed on drinking of a sweet solution without alcohol, food or water intake, motor coordination, alcohol-induced ataxia, or blood alcohol levels. Spironolactone dose-dependently reduced operant alcohol self-administration in dependent and nondependent male and female rats. In humans, a greater reduction in alcohol consumption was observed among those who received spironolactone, compared to propensity score-matched individuals who did not receive spironolactone. The largest effects were among those who reported hazardous/heavy episodic alcohol consumption at baseline (AUDIT-C ≥ 8) and those exposed to ≥ 50 mg/day of spironolactone. These convergent findings across rodent and human studies demonstrate that spironolactone reduces alcohol use and support the hypothesis that this medication may be further studied as a novel pharmacotherapy for AUD

    Hypothesis exploration with visualization of variance

    Get PDF
    BACKGROUND: The Consortium for Neuropsychiatric Phenomics (CNP) at UCLA was an investigation into the biological bases of traits such as memory and response inhibition phenotypes—to explore whether they are linked to syndromes including ADHD, Bipolar disorder, and Schizophrenia. An aim of the consortium was in moving from traditional categorical approaches for psychiatric syndromes towards more quantitative approaches based on large-scale analysis of the space of human variation. It represented an application of phenomics—wide-scale, systematic study of phenotypes—to neuropsychiatry research. RESULTS: This paper reports on a system for exploration of hypotheses in data obtained from the LA2K, LA3C, and LA5C studies in CNP. ViVA is a system for exploratory data analysis using novel mathematical models and methods for visualization of variance. An example of these methods is called VISOVA, a combination of visualization and analysis of variance, with the flavor of exploration associated with ANOVA in biomedical hypothesis generation. It permits visual identification of phenotype profiles—patterns of values across phenotypes—that characterize groups. Visualization enables screening and refinement of hypotheses about variance structure of sets of phenotypes. CONCLUSIONS: The ViVA system was designed for exploration of neuropsychiatric hypotheses by interdisciplinary teams. Automated visualization in ViVA supports ‘natural selection’ on a pool of hypotheses, and permits deeper understanding of the statistical architecture of the data. Large-scale perspective of this kind could lead to better neuropsychiatric diagnostics

    Coordinating the government bureaucracy in Hong Kong: An institutional analysis

    No full text
    The change in sovereignty of Hong Kong in 1997 has brought about an interesting puzzle: despite a high degree of institutional continuity, the Hong Kong bureaucracy that was considered highly efficient during the colonial era has appeared to turn into an inept administrative structure generating blunder after blunder. The bureaucracy seems to face greater difficulties in horizontal coordination under the new governance, and has lost the ability to produce coherent policy actions. Drawing upon a literature of institutional analysis, this article examines the institutional design for coordination in the Hong Kong government. The article argues that the bureaucracy in Hong Kong is designed upon a logic of colonial rule. Like any institutional arrangements, the colonial administrative system has inherent coordination limitations. During the colonial era, some smoothing mechanisms were developed as the lubricant for the bureaucracy's operation, but the new governance has inevitably impinged upon some of these - making the bureaucracy more prone to coordination problems. © 2005 Blackwell Publishing,.link_to_subscribed_fulltex
    corecore