23 research outputs found

    Virtual Vault

    Get PDF
    This project will develop an alpha level test for an interactive artifact browser to share the ceramics of the Arizona State Museum with educational, academic and public audiences. This application is filed under the National Endowment for the Humanities Digital Start Up grants program

    TGF-β1 Induces an Age-Dependent Inflammation of Nerve Ganglia and Fibroplasia in the Prostate Gland Stroma of a Novel Transgenic Mouse

    Get PDF
    TGF-β1 is overexpressed in wound repair and in most proliferative disorders including benign prostatic hyperplasia and prostate cancer. The stromal microenvironment at these sites is reactive and typified by altered phenotype, matrix deposition, inflammatory responses, and alterations in nerve density and biology. TGF-β1 is known to modulate several stromal responses; however there are few transgenic models to study its integrated biology. To address the actions of TGF-β1 in prostate disorders, we targeted expression of an epitope tagged and constitutively active TGF-β1 via the enhanced probasin promoter to the murine prostate gland epithelium. Transgenic mice developed age-dependent lesions leading to severe, yet focal attenuation of epithelium, and a discontinuous basal lamina. These changes were associated with elevated fibroplasia and frequency of collagenous micronodules in collapsed acini, along with an induced inflammation in nerve ganglia and small vessels. Elevated recruitment of CD115+ myeloid cells but not mature macrophages was observed in nerve ganglia, also in an age-dependent manner. Similar phenotypic changes were observed using a human prostate epithelium tissue recombination xenograft model, where epithelial cells engineered to overexpress TGF-β1 induced fibrosis and altered matrix deposition concurrent with inflammation in the stromal compartment. Together, these data suggest that elevated TGF-β1 expression induces a fibroplasia stromal response associated with breach of epithelial wall structure and inflammatory involvement of nerve ganglia and vessels. The novel findings of ganglia and vessel inflammation associated with formation of collagenous micronodules in collapsed acini is important as each of these are observed in human prostate carcinoma and may play a role in disease progression

    Serum estrogen levels and prostate cancer risk in the prostate cancer prevention trial: a nested case–control study

    Get PDF
    OBJECTIVE: Finasteride reduces prostate cancer risk by blocking the conversion of testosterone to dihydrotestosterone. However, whether finasteride affects estrogens levels or change in estrogens affects prostate cancer risk is unknown. METHODS: These questions were investigated in a case-control study nested within the prostate cancer prevention trial (PCPT) with 1,798 biopsy-proven prostate cancer cases and 1,798 matched controls. RESULTS: Among men on placebo, no relationship of serum estrogens with risk of prostate cancer was found. Among those on finasteride, those in the highest quartile of baseline estrogen levels had a moderately increased risk of Gleason score < 7 prostate cancer (for estrone, odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.06-2.15; for estradiol, OR = 1.50, 95% CI = 1.03-2.18). Finasteride treatment increased serum estrogen concentrations; however, these changes were not associated with prostate cancer risk. CONCLUSION: Our findings confirm those from previous studies that there are no associations of serum estrogen with prostate cancer risk in untreated men. In addition, finasteride results in a modest increase in serum estrogen levels, which are not related to prostate cancer risk. Whether finasteride is less effective in men with high serum estrogens, or finasteride interacts with estrogen to increase cancer risk, is uncertain and warrants further investigation

    Innovation Concepts and Typology – An Evolutionary Discussion

    Full text link

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1 . Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets
    corecore