18,980 research outputs found

    Parity-Time Symmetry Breaking beyond One Dimension: The Role of Degeneracy

    Full text link
    We consider the role of degeneracy in Parity-Time (PT) symmetry breaking for non-hermitian wave equations beyond one dimension. We show that if the spectrum is degenerate in the absence of T-breaking, and T is broken in a generic manner (without preserving other discrete symmetries), then the standard PT-symmetry breaking transition does not occur, meaning that the spectrum is complex even for infinitesimal strength of gain and loss. However the realness of the entire spectrum can be preserved over a finite interval if additional discrete symmetries X are imposed when T is broken, if X decouple all degenerate modes. When this is true only for a subset of the degenerate spectrum, there can be a partial PT transition in which this subset remains real over a finite interval of T-breaking. If the spectrum has odd-degeneracy, a fraction of the degenerate spectrum can remain in the symmetric phase even without imposing additional discrete symmetries, and they are analogous to dark states in atomic physics. These results are illustrated by the example of different T-breaking perturbations of a uniform dielectric disk and sphere, and a group theoretical analysis is given in the disk case. Finally, we show that multimode coupling is capable of restoring the T-symmetric phase at finite T-breaking. We also analyze these questions when the parity operator is replaced by another spatial symmetry operator and find that the behavior can be qualitatively different.Comment: 8 pages, 6 figure

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media

    Full text link
    In this paper, we study the unconditional convergence and error estimates of a Galerkin-mixed FEM with the linearized semi-implicit Euler time-discrete scheme for the equations of incompressible miscible flow in porous media. We prove that the optimal L2L^2 error estimates hold without any time-step (convergence) condition, while all previous works require certain time-step condition. Our theoretical results provide a new understanding on commonly-used linearized schemes for nonlinear parabolic equations. The proof is based on a splitting of the error function into two parts: the error from the time discretization of the PDEs and the error from the finite element discretization of corresponding time-discrete PDEs. The approach used in this paper is applicable for more general nonlinear parabolic systems and many other linearized (semi)-implicit time discretizations

    Free Variables and the Two Matrix Model

    Full text link
    We study the full set of planar Green's functions for a two-matrix model using the language of functions of non-commuting variables. Both the standard Schwinger-Dyson equations and equations determining connected Green's functions can be efficiently discussed and solved. This solution determines the master field for the model in the `CC-representation.'Comment: 8 pages, harvma

    A generalization of a result of Häggkvist and Nicoghossian

    Get PDF
    Using a variation of the Bondy-Chvátal closure theorem the following result is proved: If G is a 2-connected graph with n vertices and connectivity κ such that d(x) + d(y) + d(z) ≥ n + κ for any triple of independent vertices x, y, z, then G is hamiltonian

    PT-symmetry breaking and laser-absorber modes in optical scattering systems

    Full text link
    Using a scattering matrix formalism, we derive the general scattering properties of optical structures that are symmetric under a combination of parity and time-reversal (PT). We demonstrate the existence of a transition beween PT-symmetric scattering eigenstates, which are norm-preserving, and symmetry-broken pairs of eigenstates exhibiting net amplification and loss. The system proposed by Longhi, which can act simultaneously as a laser and coherent perfect absorber, occurs at discrete points in the broken symmetry phase, when a pole and zero of the S-matrix coincide.Comment: 4 pages, 4 figure
    • …
    corecore