173 research outputs found

    Computational Interspecies Translation Between Alzheimer’s Disease Mouse Models and Human Subjects Identifies Innate Immune Complement, TYROBP, and TAM Receptor Agonist Signatures, Distinct From Influences of Aging

    Get PDF
    Mouse models are vital for preclinical research on Alzheimer’s disease (AD) pathobiology. Many traditional models are driven by autosomal dominant mutations identified from early onset AD genetics whereas late onset and sporadic forms of the disease are predominant among human patients. Alongside ongoing experimental efforts to improve fidelity of mouse model representation of late onset AD, a computational framework termed Translatable Components Regression (TransComp-R) offers a complementary approach to leverage human and mouse datasets concurrently to enhance translation capabilities. We employ TransComp-R to integratively analyze transcriptomic data from human postmortem and traditional amyloid mouse model hippocampi to identify pathway-level signatures present in human patient samples yet predictive of mouse model disease status. This method allows concomitant evaluation of datasets across different species beyond observational seeking of direct commonalities between the species. Additional linear modeling focuses on decoupling disease signatures from effects of aging. Our results elucidated mouse-to-human translatable signatures associated with disease: excitatory synapses, inflammatory cytokine signaling, and complement cascade- and TYROBP-based innate immune activity; these signatures all find validation in previous literature. Additionally, we identified agonists of the Tyro3 / Axl / MerTK (TAM) receptor family as significant contributors to the cross-species innate immune signature; the mechanistic roles of the TAM receptor family in AD merit further dedicated study. We have demonstrated that TransComp-R can enhance translational understanding of relationships between AD mouse model data and human data, thus aiding generation of biological hypotheses concerning AD progression and holding promise for improved preclinical evaluation of therapies.</jats:p

    Clostridioides difficile-Associated Antibiotics Alter Human Mucosal Barrier Functions by Microbiome-Independent Mechanisms

    No full text
    A clinically relevant risk factor forClostridioides difficile-associated dis-ease (CDAD) is recent antibiotic treatment. Although broad-spectrum antibioticshave been shown to disrupt the structure of the gut microbiota, some antibioticsappear to increase CDAD risk without being highly active against intestinal anaerobes, suggesting direct nonantimicrobial effects. We examined cell biological effectsof antibiotic exposure that may be involved in bacterial pathogenesis using aninvitrogermfree human colon epithelial culture model. We found a marked loss of mucosal barrier and immune function with exposure to the CDAD-associated antibiotics clindamycin and ciprofloxacin, distinct from the results of pretreatment with anantibiotic unassociated with CDAD, tigecycline, which did not reduce innate immuneor mucosal barrier functions. Importantly, pretreatment with CDAD-associated antibi-otics sensitized mucosal barriers to C. difficiletoxin activity in primary cell-derived enteroid monolayers. These data implicate commensal-independent gut mucosal barrier changes in the increased risk of CDAD with specific antibiotics and warrantfurther studies inin vivosystems. We anticipate this work to suggest potential ave-nues of research for host-directed treatment and preventive therapies for CDAD.National Institutes of Health (U.S.) (Grant 01-EB021908)National Cancer Institute (U.S.) (Grant P30-ES002109)David H. Koch Institute for Integrative Cancer Research at MIT (Support core Grant P30-CA14501

    Endogenous production of hyaluronan, PRG4, and cytokines is sensitive to cyclic loading in synoviocytes

    No full text
    Synovial fluid is composed of hyaluronan and proteoglycan-4 (PRG4 or lubricin), which work synergistically to maintain joint lubrication. In diseases like osteoarthritis, hyaluronan and PRG4 concentrations can be altered, resulting in lowered synovial fluid viscosity, and pro-inflammatory cytokine concentrations within the synovial fluid increase. Synovial fibroblasts within the synovium are responsible for contributing to synovial fluid and can be targeted to improve endogenous production of hyaluronan and PRG4 and to alter the cytokine profile. We cyclically loaded SW982 synoviocytes to 0%, 5%, 10%, or 20% strain for three hours at 1 Hz. To assess the impact of substrate stiffness, we compared the 0% strain group to cells grown on tissue culture plastic. We measured the expression of hyaluronan turnover genes, hyaluronan localization within the cell layer, hyaluronan concentration, PRG4 concentration, and the cytokine profile within the media. Our results show that the addition of cyclic loading increased HAS3 expression, but not in a magnitude-dependent response. Hyaluronidase expression was impacted by strain magnitude, which is exemplified by the decrease in hyaluronan concentration due to cyclic loading. We also show that PRG4 concentration is increased at 5% strain, while higher strain magnitude decreases overall PRG4 concentration. Finally, 10% and 20% strain show a distinct, more pro-inflammatory cytokine profile when compared to the unloaded group. Multivariate analysis showed distinct separation between certain strain groups in being able to predict strain group, hyaluronan concentration, and PRG4 concentration from gene expression or cytokine concentration data, highlighting the complexity of the system. Overall, this study shows that cyclic loading can be used tool to modulate the endogenous production of hyaluronan, PRG4, and cytokines from synovial fibroblasts

    Coagulopathy signature precedes and predicts severity of end‐organ heat stroke pathology in a mouse model

    No full text
    © 2020 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals LLC on behalf of International Society on Thrombosis and Haemostasis Background: Immune challenge is known to increase heat stroke risk, although the mechanism of this increased risk is unclear. Objectives: We sought to understand the effect of immune challenge on heat stroke pathology. Patients/Methods: Using a mouse model of classic heat stroke, we examined the impact of prior viral or bacterial infection on hematological aspects of recovery. Mice were exposed to heat either 48 or 72 hours following polyinosinic:polycytidylic acid (poly I:C) or lipopolysaccharide injection, time points when symptoms of illness (fever, lethargy, anorexia) were minimized or completely absent. Results: Employing multivariate supervised machine learning to identify patterns of molecular and cellular markers associated with heat stroke, we found that prior viral infection simulated with poly I:C injection resulted in heat stroke presenting with high levels of factors indicating coagulopathy. Despite a decreased number of platelets in the blood, platelets are large and non-uniform in size, suggesting younger, more active platelets. Levels of D-dimer and soluble thrombomodulin were increased in more severe heat stroke, and in cases of the highest level of organ damage markers D-dimer levels dropped, indicating potential fibrinolysis-resistant thrombosis. Genes corresponding to immune response, coagulation, hypoxia, and vessel repair were up-regulated in kidneys of heat-challenged animals; these correlated with both viral treatment and distal organ damage while appearing before discernible tissue damage to the kidney itself. Conclusions: Heat stroke-induced coagulopathy may be a driving mechanistic force in heat stroke pathology, especially when exacerbated by prior infection. Coagulation markers may serve as accessible biomarkers for heat stroke severity and therapeutic strategies.US Army Medical Research Acquisition Agency (Grant/Award W81XWH-13-MOMJPC5-IPPEHA)USARO, Grant/Award (W911NF- 09-D-0001)NIH-DOD, Grant/Award (UM1-HL120877)National Institute of Environmental Health Sciences (Grant/ Award T32-ES007020

    Cross-species transcriptomic signatures predict response to MK2 inhibition in mouse models of chronic inflammation

    No full text
    Inflammatory bowel diseases (IBDs) are genetically complex and exhibit significant inter-patient heterogeneity in disease presentation and therapeutic response. Here, we show that mouse models of IBD exhibit variable responses to inhibition of MK2, a pro-inflammatory serine/threonine kinase, and that MK2 inhibition suppresses inflammation by targeting inflammatory monocytes and neutrophils in murine models. Using a computational approach (TransComp-R) that allows for cross-species comparison of transcriptomic features, we identified an IBD patient subgroup that is predicted to respond to MK2 inhibition, and an independent preclinical model of chronic intestinal inflammation predicted to be non-responsive, which we validated experimentally. Thus, cross-species mouse-human translation approaches can help to identify patient subpopulations in which to deploy new therapies

    Performance statistics for sPLS-DA analyses.

    No full text
    Classification error rates and ROC curves of each component for A) gene expression and B) cytokine concentration predicting strain group. (PDF)</p

    An interspecies translation model implicates integrin signaling in infliximab-resistant inflammatory bowel disease

    No full text
    © 2020 American Association for the Advancement of Science. All rights reserved. Anti-tumor necrosis factor (anti-TNF) therapy resistance is a major clinical challenge in inflammatory bowel disease (IBD), due, in part, to insufficient understanding of disease-site, protein-level mechanisms. Although proteomics data from IBD mouse models exist, data and phenotype discrepancies contribute to confounding translation from preclinical animal models of disease to clinical cohorts. We developed an approach called translatable components regression (TransComp-R) to overcome interspecies and trans-omic discrepancies between mouse models and human subjects. TransComp-R combines mouse proteomic data with patient pretreatment transcriptomic data to identify molecular features discernable in the mouse data that are predictive of patient response to therapy. Interrogating the TransComp-R models revealed activated integrin pathway signaling in patients with anti-TNF-resistant colonic Crohn's disease (cCD) and ulcerative colitis (UC). As a step toward validation, we performed single-cell RNA sequencing (scRNA-seq) on biopsies from a patient with cCD and analyzed publicly available immune cell proteomics data to characterize the immune and intestinal cell types contributing to anti-TNF resistance. We found that ITGA1 was expressed in T cells and that interactions between these cells and intestinal cell types were associated with resistance to anti-TNF therapy. We experimentally showed that the ?1 integrin subunit mediated the effectiveness of anti-TNF therapy in human immune cells. Thus, TransComp-R identified an integrin signaling mechanism with potential therapeutic implications for overcoming anti-TNF therapy resistance. We suggest that TransComp-R is a generalizable framework for addressing species, molecular, and phenotypic discrepancies between model systems and patients to translationally deliver relevant biological insights
    corecore