12 research outputs found
Mameyes River RFID Tracer Cobbles
<p>Positions of RFID equiped coarse sediment tracer particles before and after floods at the single flood to annual timescales in the Mameyes River, PR. Please see accompanying metadata file "RFID Tracer Documentation". Tracer particle locations are available in both a cartesian coordinate system, as well as a streamwise normal coordinate system.</p>
<p>Â </p
Critical Filter Hydrograph and Field Site Data
These files represent hydrographs and associated field data. Please see the readme file for more information. Each .zip file contains an illustrated readme/methods file
Bisley3 RFID Sediment Tracer Data
<p>Positions of RFID equiped coarse sediment tracer particles before and after floods at the single flood to annual timescales in the Mameyes River tributary within catchment 3 of the Bisley Experimental Forest, PR. Please see accompanying metadata file "RFID Tracer Documentation". Tracer particle locations are available in both a cartesian coordinate system, as well as a streamwise normal coordinate system.</p
Onset of Sediment Motion - Nature Communications Paper 2014 - Data
<p>Dataset corresponding to data represented in the paper published at Nature Communications:</p>
<p>Onset of sediment transport is a continuous transition driven by fluid shear and granular creep</p>
<p>by Morgane Houssais1∗, Carlos P. Ortiz1,2∗, Douglas J. Durian2 and Douglas J. Jerolmack1</p>
<p>1 Department of Earth and Environmental Science, University of Pennsylvania, Â 2 Department of Physics and Astronomy, University of Pennsylvania</p>
<p>∗ Authors contributed equally to this work</p
Data for Shields stress 3.8
small and large grains number ratio time-series for Shields stress 3.8. Concentration map of large grains can be made using the following contour plot commands in MATLAB or other data analysis packages:<div><br></div><div>%%%%</div><div><p>nlratio_tot = nlg./(nsm+nlg);</p><p>for i=1:458</p><p>time_ts(i,:)=time;</p><p>end</p><p>y_pos = (1:1:458)*(25/458);</p><p>for i=1:length(time)</p><p>y_mesh(:,i)=y_pos;</p><p>end</p><p>[xq,yq] = meshgrid(0:0.0005:1,0:0.175:25);</p><p>vq = griddata(time_ts(1:458,1:length(time)),25-y_mesh(1:458,1:length(time)),nlratio_tot(1:458,1:length(time)),xq,yq);</p><p>figure; [C,h] = contourf(xq,yq,vq,'LineStyle', 'none','LevelStep', 0.01);</p><p>colormap parula;</p><p>%%%%</p></div
Data for Shields stress 4.7
small and large grains number ratio time-series for Shields stress 4.7. Concentration map of large grains can be made using the following contour plot commands in MATLAB or other data analysis packages:<div><br></div><div>%%%%</div><div><p>nlratio_tot = nlg./(nsm+nlg);</p><p>for i=1:458</p><p>time_ts(i,:)=time;</p><p>end</p><p>y_pos = (1:1:458)*(25/458);</p><p>for i=1:length(time)</p><p>y_mesh(:,i)=y_pos;</p><p>end</p><p>[xq,yq] = meshgrid(0:0.0005:1,0:0.175:25);</p><p>vq = griddata(time_ts(1:458,1:length(time)),25-y_mesh(1:458,1:length(time)),nlratio_tot(1:458,1:length(time)),xq,yq);</p><p>figure; [C,h] = contourf(xq,yq,vq,'LineStyle', 'none','LevelStep', 0.01);</p><p>colormap parula;</p><p>%%%%</p></div
Data for Shields stress 4.4
small and large grain number ratio time-series for Shields stress 4.4. Concentration map of large grains can be made using the following contour plot commands in MATLAB or other data analysis packages:<div><br></div><div>%%%%</div><div><p>nlratio_tot = nlg./(nsm+nlg);</p>
<p>for i=1:458</p>
<p>time_ts(i,:)=time;</p>
<p>end</p>
<p>y_pos = (1:1:458)*(25/458);</p>
<p>for i=1:length(time)</p>
<p>y_mesh(:,i)=y_pos;</p>
<p>end</p>
<p>[xq,yq] = meshgrid(0:0.0005:1,0:0.175:25);</p>
<p>vq = griddata(time_ts(1:458,1:length(time)),25-y_mesh(1:458,1:length(time)),nlratio_tot(1:458,1:length(time)),xq,yq);</p>
<p>figure; [C,h] = contourf(xq,yq,vq,'LineStyle', 'none','LevelStep', 0.01);</p>
<p>colormap parula;</p><p>%%%%</p></div
Data for Shields stress 2.7
small and large grain number ratio time-series for Shields stress 2.7. Concentration map of large grains can be made using the following contour plot commands in MATLAB or other data analysis packages:<div><br></div><div>%%%%</div><div><p>nlratio_tot = nlg./(nsm+nlg);</p><p>for i=1:458</p><p>time_ts(i,:)=time;</p><p>end</p><p>y_pos = (1:1:458)*(25/458);</p><p>for i=1:length(time)</p><p>y_mesh(:,i)=y_pos;</p><p>end</p><p>[xq,yq] = meshgrid(0:0.0005:1,0:0.175:25);</p><p>vq = griddata(time_ts(1:458,1:length(time)),25-y_mesh(1:458,1:length(time)),nlratio_tot(1:458,1:length(time)),xq,yq);</p><p>figure; [C,h] = contourf(xq,yq,vq,'LineStyle', 'none','LevelStep', 0.01);</p><p>colormap parula;</p><p>%%%%</p></div
Matlab fig. format and data for Supplementary Fig. 3
Matlab fig. format and data for Supplementary Fig.
Sediment Shape Evolution Due to Pebble Abrasion in the Rio Mameyes, Puerto Rico
<p>Data collected from the Rio Mameyes to characterize change in size and shape of river sediment due to abrasion. Complete details on measurement and calculation techniques can be found in the following paper: <em>Qunatifying the significance of abrasion and selective transport on downstream pebble evolution, </em>Journal of Geophysical Review: Earth Surface, (in review).</p