9 research outputs found

    A molecular beacon, bead-based assay for the detection of nucleic acids by flow cytometry

    Get PDF
    Molecular beacons are dual-labelled probes that are typically used in real-time PCR assays, but have also been conjugated with solid matrices for use in microarrays or biosensors. We have developed a fluid array system using microsphere-conjugated molecular beacons and the flow cytometer for the specific, multiplexed detection of unlabelled nucleic acids in solution. For this array system, molecular beacons were conjugated with microspheres using a biotin-streptavidin linkage. A bridged conjugation method using streptavidin increased the signal-to-noise ratio, allowing for further discrimination of target quantitation. Using beads of different sizes and molecular beacons in two fluorophore colours, synthetic nucleic acid control sequences were specifically detected for three respiratory pathogens, including the SARS coronavirus in proof-of-concept experiments. Considering that routine flow cytometers are able to detect up to four fluorescent channels, this novel assay may allow for the specific multiplex detection of a nucleic acid panel in a single tube

    Simultaneous control of DNA and RNA processing efficiency using a nucleic acid calibration set.

    Get PDF
    PCR-based detection techniques enables reliable and sensitive nucleic acid target detection. However, quantitative determination methods often fail to control for the efficiency of nucleic acid extraction, reverse transcription, and PCR amplification. This problem is even more prominent when working with clinical samples due to target sequence loss during nucleic acid processing or the co-purification of PCR inhibitors (1,2). Handling processes are often assumed to approach 100% efficiency in the laboratory, even if practical experience shows that this efficiency can be much lower. This inability to ensure accuracy can lead to significant error in uncalibrated DNA sample quantitation. The additional need for reverse transcription of RNA may further increase the quantitative error rate, as yet another enzymatic process is involved. Nucleic acid controls have been developed based upon known sequences to calibrate either DNA or RNA handling; DNA calibrators have been used to control for the amplification of target sequences using realtime PCR methods (3–8), while RNA calibrators have been developed to test reverse transcription and amplification efficiencies (9–11). A nonpathogenic viral particle carrying a sequence for use as an external positive control of extraction and amplification has also been described (12). Unfortunately, most of the established processing controls are only suitable for limited applications (i.e., either DNA or RNA detection). Cross-contamination of biological samples or minute detection from natural sources reveals the need for completely synthetic sequences, with no homology to sequences in the nucleic acid databases. It is, therefore, beneficial to design an internal, synthetic calibration system that can control for both DNA and RNA processing steps in a single tube. This set includes both RNA and DNA targets with identical primer binding sites and, thus, primer binding efficiency, but easily distinguishable sequence characteristics, allowing for simultaneous detection, quantitation, and calibration of nucleic acid processing efficiency. A 150-bp randomly generated nucleic acid sequence was developed for use as a short control (SC). A GCrich 75-bp sequence was inserted in the middle of the 150-bp sequence to generate a 225-bp sequence, long control (LC). Besides size, the two sequences were designed to have easily distinguishable probe binding sites with a predicted product melting temperature difference of 4°C. Calibrator sequences have been published as GenBank¼ accession nos. EF143258 (DNA control, LC) and EF143257 (RNA control, SC). Simultaneous control of DNA and RNA processing efficiency using a nucleic acid calibration se

    Long-Lasting CD3(+) T-Cell Deficiency after Cord Blood Stem Cell Transplantation in a Human Herpesvirus 6-Infected Child

    No full text
    We report a long-lasting (8-month) reactivation of human herpesvirus 6 (HHV-6) infection in child who had undergone cord blood stem cell transplantation. The reactivation was characterized by high viral loads and by immediate-early mRNA positivity. HHV-6 infection was associated with a deep depletion of CD3, while the CD4/CD8 ratio remained substantially unchanged

    Flow Cytometry and T-Cell Response Monitoring after Smallpox Vaccination

    Get PDF
    Orthopoxvirus zoonosis or smallpox as result of bioterrorism or biological warfare represents a risk for epidemic spread. By monitoring T-cell responses by flow cytometry, we observed a recall response after recent vaccination against smallpox. When the high similarity between the orthopoxviruses is considered, this rapid assay that uses vaccinia antigens could identify recently exposures
    corecore