642 research outputs found

    Gauge thresholds in the presence of oblique magnetic fluxes

    Full text link
    We compute the one-loop partition function and analyze the conditions for tadpole cancellation in type I theories compactified on tori in the presence of internal oblique magnetic fields. We check open - closed string channel duality and discuss the effect of T-duality. We address the issue of the quantum consistency of the toroidal model with stabilized moduli recently proposed by Antoniadis and Maillard (AM). We then pass to describe the computation of one-loop threshold corrections to the gauge couplings in models of this kind. Finally we briefly comment on coupling unification and dilaton stabilization in phenomenologically more viable modelsComment: 34 pages, 2 figures; references added, major changes to the discussion of the model proposed by Antoniadis and Maillar

    Bosonized noncommutative bi-fundamental fermion and S-duality

    Full text link
    We perform the path-integral bosonization of the recently proposed noncommutative massive Thirring model (NCMT1_{1}) [JHEP0503(2005)037]. This model presents two types of current-current interaction terms related to the bi-fundamental representation of the group U(1). Firstly, we address the bosonization of a bi-fundamental free Dirac fermion defined on a noncommutative (NC) Euclidean plane \IR_{\theta}^{2}. In this case we show that the fermion system is dual to two copies of the NC Wess-Zumino-Novikov-Witten model. Next, we apply the bosonization prescription to the NCMT1_{1} model living on \IR_{\theta}^{2} and show that this model is equivalent to two-copies of the WZNW model and a two-field potential defined for scalar fields corresponding to the global U(1)×U(1)U(1)\times U(1) symmetry plus additional bosonized terms for the four fermion interactions. The bosonic sector resembles to the one proposed by Lechtenfeld et al. [Nucl. Phys. B705(2005)477] as the noncommutative sine-Gordon for a {\sl pair} of scalar fields. The bosonic and fermionic couplings are related by a strong-weak duality. We show that the couplings of the both sectors for some representations satisfy similar relationships up to relevant re-scalings, thus the NC bi-fundamental couplings are two times the corresponding ones of the NC fundamental (anti-fundamental) and eight times the couplings of the ordinary massive Thirring and sine-Gordon models.Comment: 18 pages, LaTex. References added. A general product f(xvt)g(xvt)f(x-vt) \star g(x-vt) has been considered in the conclusion section . Version to appear in JHE

    No Exit? Withdrawal Rights and the Law of Corporate Reorganizations

    Get PDF
    Bankruptcy scholarship is largely a debate about the comparative merits of a mandatory regime on one hand and bankruptcy by free design on the other. By the standard account, the current law of corporate reorganization is mandatory. Various rules that cannot be avoided ensure that investors’ actions are limited and they do not exercise their rights against specialized assets in a way that destroys the value of a business as a whole. These rules solve collective action problems and reduce the risk of bargaining failure. But there are costs to a mandatory regime. In particular, investors cannot design their rights to achieve optimal monitoring as they could in a system of bankruptcy by free design. This Article suggests that the academic debate has missed a fundamental feature of the law. Bankruptcy operates on legal entities, not on firms in the economic sense. For this reason, sophisticated investors do not face a mandatory regime at all. The ability of investors to place assets in separate entities gives them the ability to create specific withdrawal rights in the event the firm encounters financial distress. There is nothing mandatory about rules like the automatic stay when assets can be partitioned off into legal entities that are beyond the reach of the bankruptcy judge. Thus, by partitioning assets of one economic enterprise into different legal entities, investors can create a tailored bankruptcy regime. In this way, legal entities serve as building blocks that can be combined to create specific and varied but transparent investor withdrawal rights. This regime of tailored bankruptcy has been unrecognized and underappreciated and may be preferable to both mandatory and free design regimes. By allowing a limited number of investors to opt out of bankruptcy in a particular, discrete, and visible way, investors as a group may be able to both limit the risk of bargaining failure and at the same time enjoy the disciplining effect that a withdrawal right brings with it
    corecore