455 research outputs found

    The last common bilaterian ancestor

    Get PDF
    Many regulatory genes appear to be utilized in at least superficially similar ways in the development of particular body parts in Drosophila and in chordates. These similarities have been widely interpreted as functional homologies, producing the conventional view of the last common protostome-deuterostome ancestor (PDA) as a complex organism that possessed some of the same body parts as modern bilaterians. Here we discuss an alternative view, in which the last common PDA had a less complex body plan than is frequently conceived. This reconstruction alters expectations for Neoproterozoic fossil remains that could illustrate the pathways of bilaterian evolution

    Gene Regulatory Networks and the Evolution of Animal Body Plans

    Get PDF
    Development of the animal body plan is controlled by large gene regulatory networks (GRNs), and hence evolution of body plans must depend upon change in the architecture of developmental GRNs. However, these networks are composed of diverse components that evolve at different rates and in different ways. Because of the hierarchical organization of developmental GRNs, some kinds of change affect terminal properties of the body plan such as occur in speciation, whereas others affect major aspects of body plan morphology. A notable feature of the paleontological record of animal evolution is the establishment by the Early “Cambrian of virtually all phylum-level body plans. We identify a class of GRN component, the kernels” of the network, which, because of their developmental role and their particular internal structure, are most impervious to change. Conservation of phyletic body plans may have been due to the retention since pre-Cambrian time of GRN kernels, which underlie development of major body parts

    The evolution of hierarchical gene regulatory networks

    Get PDF
    Comparative developmental evidence indicates that reorganizations in developmental gene regulatory networks (GRNs) underlie evolutionary changes in animal morphology, including body plans. We argue here that the nature of the evolutionary alterations that arise from regulatory changes depends on the hierarchical position of the change within a GRN. This concept cannot be accomodated by microevolutionary nor macroevolutionary theory. It will soon be possible to investigate these ideas experimentally, by assessing the effects of GRN changes on morphological evolution

    School Vouchers: Settled Questions, Continuing Disputes

    Get PDF
    Provides an assessment of the constitutional principles announced by the Court, following the June 2002 decision in the Cleveland school voucher case. Presents contrasting arguments on educational policy that address key issues about the decision

    Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver

    Get PDF
    HPCMP CREATE-AV Conservative Field Finite Element (COFFE) is a modular, extensible, robust numerical solver for the Navier-Stokes equations that invokes modularity and extensibility from its first principles. COFFE implores a flexible, class-based hierarchy that provides a modular approach consisting of discretization, physics, parallelization, and linear algebra components. These components are developed with modern software engineering principles to ensure ease of uptake from a user's or developer's perspective. The Streamwise Upwind/Petrov-Galerkin (SU/PG) method is utilized to discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations tightly coupled with a variety of turbulence models. The mathematics and the philosophy of the methodology that makes up COFFE are presented
    corecore