220 research outputs found

    The Molecular Biography of the Cell

    Get PDF

    Single-Cell Transcript Analysis of Pancreas Development

    Get PDF
    AbstractDNA microarray analysis was combined with a modified single-cell PCR procedure to study gene expression profiles of single cells at different stages of pancreatic development. This method identifies distinct cell types at embryonic day 10.5, a stage when the pancreatic epithelium is morphologically uniform. Some cells express unexpected combinations of genes, and these expression patterns provide new insights into pancreas development. Following on these findings, we use PCR products from different cell types to identify novel pancreatic genes, some of which mark subtypes of developing pancreatic cells. By integrating these data with previous genetic and biochemical studies, we propose a pathway for pancreatic cell development. This form of single-cell transcriptional analysis can be applied to any developmental process or tissue to characterize distinct cell types

    The relationship between food intake and predation risk in migratory caribou and implications to caribou and wolf population dynamics

    Get PDF
    We examined the hypothesis that spring migration in barren-ground caribou (Rangifer tarandus) enhances access to high quality food, reduces predation risks or both. We related our findings to the hypothesis that one of the consequences of migration is that prey populations cannot be regulated by predation because predators are unable to respond numerically to changes in abundance of migratory prey. In the Northwest Territories, migration to calving grounds by pregnant cows reduced the risk of predation on neonates. Wolf (Canis lupus) densities on calving grounds averaged only 22% of winter range densities because most wolves denned near tree line. The quality and quantity of food that was available to cows that migrated to calving grounds was lower than for bulls and other caribou that lagged far behind the pregnant cows during spring migration. Fecal nitrogen levels were higher in bulls than in cows in late May and early June but there were no differences in mid or late June. Areas occupied by bulls in late May had a greater biomass of live sedges than on the calving ground in early June. It appears that although food in July is abundant and nutritious, insect harassment prevents efficient feeding. Body fat reserves in both sexes declined to almost zero by mid-July, the lowest level of the year. Insect numbers declined in August and body fat levels increased to the highest level of the year by early September. Because the timing of caribou's return to the hunting ranges of tree line denning wolves was related to caribou density, our data were inconsistent with the suggested consequence of migration. Tree line denning by wolves and density-dependent changes in caribou migration suggests a mechanism for population regulation in caribou and wolves. We suggest that the process is as follows; when caribou numbers increase, some density-dependent factor causes range expansion in August (e.g., competition for food) causing caribou to return earlier to the hunting ranges of tree line denning wolves, more denning wolves have access to caribou, wolf pup survival increases and wolf numbers increase. The effect on caribou population growth will depend on the timing and magnitude of the wolf numerical response

    Prospective isolation and global gene expression analysis of definitive and visceral endoderm

    Get PDF
    AbstractIn spite of the therapeutic importance of endoderm derivatives such as the pancreas, liver, lung, and intestine, there are few molecular markers specific for early endoderm. In order to identify endoderm-specific genes as well as to define transcriptional differences between definitive and visceral endoderm, we performed microarray analysis on E8.25 definitive and visceral endoderm. We have developed an early endoderm gene expression signature, and clarified the transcriptional similarities and differences between definitive and visceral endoderm. Additionally, we have developed methods for flow cytometric isolation of definitive and visceral endoderm. These results shed light on the mechanism of endoderm formation and should facilitate investigation of endoderm formation from embryonic stem cells

    Evaluating Trauma Sonography for Operational Use in the Microgravity Environment

    Get PDF
    Sonography is the only medical imaging modality aboard the ISS, and is likely to remain the leading imaging modality in future human space flight programs. While trauma sonography (TS) has been well recognized for terrestrial trauma settings, the technique had to be evaluated for suitability in space flight prior to adopting it as an operational capability. The authors found the following four-phased evaluative approach applicable to this task: 1) identifying standard or novel terrestrial techniques for potential use in space medicine; 2) developing and testing these techniques with suggested modifications on the ground (1g) either in clinical settings or in animal models, as appropriate; 3) evaluating and refining the techniques in parabolic flight (0g); and 4) validating and implementing for clinical use in space. In Phase I of the TS project, expert opinion and literature review suggested TS to be a potential screening tool for trauma in space. In Phase II, animal models were developed and tested in ground studies, and clinical studies were carried out in collaborating trauma centers. In Phase III, animal models were flight-tested in the NASA KC-135 Reduced Gravity Laboratory. Preliminary results of the first three phases demonstrated potential clinical utility of TS in microgravity. Phase IV studies have begun to address crew training issues, on-board imaging protocols, and data transfer procedures necessary to offer the modified TS technique for space use
    corecore