30,478 research outputs found

    On higher derivative corrections to Wess-Zumino and Tachyonic actions in type II super string theory

    Full text link
    We evaluate in detail the string scattering amplitude to compute different interactions of two massless scalars, one tachyon and one closed string Ramond-Ramond field in type II super string theory. In particular we find two scalar field and two tachyon couplings to all orders of α′\alpha' up to on-shell ambiguity. We then obtain the momentum expansion of this amplitude and apply this infinite number of couplings to actually check that the infinite number of tachyon poles of S-matrix element of this amplitude for the p=np=n case (where pp is the spatial dimension of a Dp_p-brane and nn is the rank of a Ramond-Ramond field strength) to all orders of α′\alpha' is precisely equal to the infinite number of tachyon poles of the field theory. In addition to confirming the couplings of closed string Ramond-Ramond field to the world-volume gauge field and scalar fields including commutators, we also propose an extension of the Wess-Zumino action which naturally reproduces these new couplings in field theory such that they could be confirmed with direct S-matrix computations. Finally we show that the infinite number of massless poles and contact terms of this amplitude for the p=n+1p=n+1 case can be reproduced by Chern-Simons, higher derivative corrections of the Wess-Zumino and symmetrized trace tachyon DBI actions.Comment: 51 pages, some refs and comments added, typos are removed. Almost all ambiguities in BPS and non-BPS effective actions have been addresse

    Giant Gamma-ray Bubbles from Fermi-LAT: AGN Activity or Bipolar Galactic Wind?

    Full text link
    Data from the Fermi-LAT reveal two large gamma-ray bubbles, extending 50 degrees above and below the Galactic center, with a width of about 40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE ~ E^-2) than the IC emission from electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant spatial variation in the spectrum or gamma-ray intensity within the bubbles, or between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; the edges of the bubbles also line up with features in the ROSAT X-ray maps at 1.5-2 keV. We argue that these Galactic gamma-ray bubbles were most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ~10 Myr. Dark matter annihilation/decay seems unlikely to generate all the features of the bubbles and the associated signals in WMAP and ROSAT; the bubbles must be understood in order to use measurements of the diffuse gamma-ray emission in the inner Galaxy as a probe of dark matter physics. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.Comment: 46 pages, 28 figures, accepted by Ap

    Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers

    Get PDF
    Energy recovering an electron beam after it has participated in a free-electron laser (FEL) interaction can be quite challenging because of the substantial FEL-induced energy spread and the energy anti-damping that occurs during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such an energy recovery scheme was implemented by properly matching the longitudinal phase space throughout the recirculation transport by employing the so-called energy compression scheme. In the present paper,after presenting a single-particle dynamics approach of the method used to energy-recover the electron beam, we report on experimental validation of the method obtained by measurements of the so-called "compression efficiency" and "momentum compaction" lattice transfer maps at different locations in the recirculation transport line. We also compare these measurements with numerical tracking simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&

    Applications of Hilbert Module Approach to Multivariable Operator Theory

    Full text link
    A commuting nn-tuple (T1,…,Tn)(T_1, \ldots, T_n) of bounded linear operators on a Hilbert space \clh associate a Hilbert module H\mathcal{H} over C[z1,…,zn]\mathbb{C}[z_1, \ldots, z_n] in the following sense: C[z1,…,zn]×H→H,(p,h)↦p(T1,…,Tn)h,\mathbb{C}[z_1, \ldots, z_n] \times \mathcal{H} \rightarrow \mathcal{H}, \quad \quad (p, h) \mapsto p(T_1, \ldots, T_n)h,where p∈C[z1,…,zn]p \in \mathbb{C}[z_1, \ldots, z_n] and h∈Hh \in \mathcal{H}. A companion survey provides an introduction to the theory of Hilbert modules and some (Hilbert) module point of view to multivariable operator theory. The purpose of this survey is to emphasize algebraic and geometric aspects of Hilbert module approach to operator theory and to survey several applications of the theory of Hilbert modules in multivariable operator theory. The topics which are studied include: generalized canonical models and Cowen-Douglas class, dilations and factorization of reproducing kernel Hilbert spaces, a class of simple submodules and quotient modules of the Hardy modules over polydisc, commutant lifting theorem, similarity and free Hilbert modules, left invertible multipliers, inner resolutions, essentially normal Hilbert modules, localizations of free resolutions and rigidity phenomenon. This article is a companion paper to "An Introduction to Hilbert Module Approach to Multivariable Operator Theory".Comment: 46 pages. This is a companion paper to arXiv:1308.6103. To appear in Handbook of Operator Theory, Springe

    D-branes and Discrete Torsion II

    Full text link
    We derive D-brane gauge theories for C^3/Z_n x Z_n orbifolds with discrete torsion and study the moduli space of a D-brane at a point. We show that, as suggested in previous work, closed string moduli do not fully resolve the singularity, but the resulting space -- containing n-1 conifold singularities -- is somewhat surprising. Fractional branes also have unusual properties. We also define an index which is the CFT analog of the intersection form in geometric compactification, and use this to show that the elementary D6-brane wrapped about T^6/Z_n x Z_n must have U(n) world-volume gauge symmetry.Comment: harvmac, 25 p

    Cold dark matter models with high baryon content

    Get PDF
    Recent results have suggested that the density of baryons in the Universe, OmegaB, is much more uncertain than previously thought, and may be significantly higher. We demonstrate that a higher OmegaB increases the viability of critical-density cold dark matter (CDM) models. High baryon fraction offers the twin benefits of boosting the first peak in the microwave anisotropy power spectrum and of suppressing short-scale power in the matter power spectrum. These enable viable CDM models to have a larger Hubble constant than otherwise possible. We carry out a general exploration of high OmegaB CDM models, varying the Hubble constant h and the spectral index n. We confront a variety of observational constraints and discuss specific predictions. Although some observational evidence may favour baryon fractions as high as 20 per cent, we find that values around 10 to 15 per cent provide a reasonable fit to a wide range of data. We suggest that models with OmegaB in this range, with h about 0.5 and n about 0.8, are currently the best critical-density CDM models.Comment: 14 pages, LaTeX, with 9 included figures, to appear in MNRAS. Revised version includes updated references, some changes to section 4. Conclusions unchange
    • …
    corecore