17,226 research outputs found

    Clearing residual planetesimals by sweeping secular resonances in transitional disks: a lone-planet scenario for the wide gaps in debris disks around Vega and Fomalhaut

    Get PDF
    Extended gaps in the debris disks of both Vega and Fomalhaut have been observed. These structures have been attributed to tidal perturbations by multiple super-Jupiter gas giant planets. Within the current observational limits, however, no such massive planets have been detected. Here we propose a less stringent `lone-planet' scenario to account for the observed structure with a single eccentric gas giant and suggest that clearing of these wide gaps is induced by its sweeping secular resonance. During the depletion of the disk gas, the planet's secular resonance propagates inward and clears a wide gap over an extended region of the disk. Although some residual intermediate-size planetesimals may remain in the gap, their surface density is too low to either produce super-Earths or lead to sufficiently frequent disruptive collisions to generate any observable dusty signatures. The main advantage of this lone-planet sweeping-secular-resonance model over the previous multiple gas giant tidal truncation scenario is the relaxed requirement on the number of gas giants. The observationally inferred upper mass limit can also be satisfied provided the hypothetical planet has a significant eccentricity. A significant fraction of solar or more massive stars bear gas giant planets with significant eccentricities. If these planets acquired their present-day kinematic properties prior to the depletion of their natal disks, their sweeping secular resonance would effectively impede the retention of neighboring planets and planetesimals over a wide range of orbital semi-major axes.Comment: 20 pages, 12 figures. Accepted for publication in Ap

    From integrated to expedient: an adaptive framework for river basin management in developing countries

    Get PDF
    Water resource management / River basin management / Water allocation / Case studies / Africa South of Sahara / Great Ruaha River Basin

    Reverse geometric engineering of singularities

    Get PDF
    One can geometrically engineer supersymmetric field theories theories by placing D-branes at or near singularities. The opposite process is described, where one can reconstruct the singularities from quiver theories. The description is in terms of a noncommutative quiver algebra which is constructed from the quiver diagram and the superpotential. The center of this noncommutative algebra is a commutative algebra, which is the ring of holomorphic functions on a variety V. If certain algebraic conditions are met, then the reverse geometric engineering produces V as the geometry that D-branes probe. It is also argued that the identification of V is invariant under Seiberg dualities.Comment: 17 pages, Latex. v2: updates reference

    Cylindrical gravitational waves in expanding universes: Models for waves from compact sources

    Get PDF
    New boundary conditions are imposed on the familiar cylindrical gravitational wave vacuum spacetimes. The new spacetime family represents cylindrical waves in a flat expanding (Kasner) universe. Space sections are flat and nonconical where the waves have not reached and wave amplitudes fall off more rapidly than they do in Einstein-Rosen solutions, permitting a more regular null inifinity.Comment: Minor corrections to references. A note added in proo

    Depletion potentials in highly size-asymmetric binary hard-sphere mixtures: Comparison of accurate simulation results with theory

    Get PDF
    We report a detailed study, using state-of-the-art simulation and theoretical methods, of the depletion potential between a pair of big hard spheres immersed in a reservoir of much smaller hard spheres, the size disparity being measured by the ratio of diameters q=\sigma_s/\sigma_b. Small particles are treated grand canonically, their influence being parameterized in terms of their packing fraction in the reservoir, \eta_s^r. Two specialized Monte Carlo simulation schemes --the geometrical cluster algorithm, and staged particle insertion-- are deployed to obtain accurate depletion potentials for a number of combinations of q\leq 0.1 and \eta_s^r. After applying corrections for simulation finite-size effects, the depletion potentials are compared with the prediction of new density functional theory (DFT) calculations based on the insertion trick using the Rosenfeld functional and several subsequent modifications. While agreement between the DFT and simulation is generally good, significant discrepancies are evident at the largest reservoir packing fraction accessible to our simulation methods, namely \eta_s^r=0.35. These discrepancies are, however, small compared to those between simulation and the much poorer predictions of the Derjaguin approximation at this \eta_s^r. The recently proposed morphometric approximation performs better than Derjaguin but is somewhat poorer than DFT for the size ratios and small sphere packing fractions that we consider. The effective potentials from simulation, DFT and the morphometric approximation were used to compute the second virial coefficient B_2 as a function of \eta_s^r. Comparison of the results enables an assessment of the extent to which DFT can be expected to correctly predict the propensity towards fluid fluid phase separation in additive binary hard sphere mixtures with q\leq 0.1.Comment: 16 pages, 9 figures, revised treatment of morphometric approximation and reordered some materia

    Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"

    Full text link
    In the model of Chain Inflation, a sequential chain of coupled scalar fields drives inflation. We consider a multidimensional potential with a large number of bowls, or local minima, separated by energy barriers: inflation takes place as the system tunnels from the highest energy bowl to another bowl of lower energy, and so on until it reaches the zero energy ground state. Such a scenario can be motivated by the many vacua in the stringy landscape, and our model can apply to other multidimensional potentials. The ''graceful exit'' problem of Old Inflation is resolved since reheating is easily achieved at each stage. Coupling between the fields is crucial to the scenario. The model is quite generic and succeeds for natural couplings and parameters. Chain inflation succeeds for a wide variety of energy scales -- for potentials ranging from 10MeV scale inflation to 101610^{16} GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde

    Deconstructing Noncommutativity with a Giant Fuzzy Moose

    Get PDF
    We argue that the worldvolume theories of D-branes probing orbifolds with discrete torsion develop, in the large quiver limit, new non-commutative directions. This provides an explicit `deconstruction' of a wide class of noncommutative theories. This also provides insight into the physical meaning of discrete torsion and its relation to the T-dual B field. We demonstrate that the strict large quiver limit reproduces the matrix theory construction of higher-dimensional D-branes, and argue that finite `fuzzy moose' theories provide novel regularizations of non-commutative theories and explicit string theory realizations of gauge theories on fuzzy tori. We also comment briefly on the relation to NCOS, (2,0) and little string theories.Comment: 22 pages, 3 figures, typos caught and refs added; expanded interpretation of discrete torsio
    corecore