39 research outputs found

    Inferring Past Climate from Moraine Evidence Using Glacier Modelling

    No full text
    Glacier length fluctuations reflect changes in climate, most notably temperature and precipitation. By this reasoning, moraines, which represent former glacier extent, can be used to estimate past climate. However, estimating palaeoclimate from moraines is not a straight-forward process and involves several assumptions. For example, recent studies have suggested that interannual stochastic variability in temperature in a steady-state climate can cause a glacier to experience kilometre-scale fluctuations. Such studies cast doubt on the usefulness of moraines as climate proxy indicators. Detailed glacial geomorphological maps and moraine chronologies have improved our understanding of the spatial and temporal extent of past glacial events in New Zealand. Palaeoclimate estimates associated with these moraines have thus-far come from simple methods, such as the accumulation area ratio, with unquantifiable uncertainties. I used a numerical modelling approach to approximate the present-day glacier mass balance pattern, which includes the effects of snow avalanching on glacier mass balance. I then used the models to reconstruct palaeoclimate for Lateglacial and Holocene glacial events in New Zealand, and to better understand moraine-glacier-climate relationships. The climate reconstructions come from simulating past glacier expansions to specific terminal moraines, but I also simulated glacier fluctuations in response to a previously derived temperature reconstruction, and to interannual stochastic variability in temperature. The purpose behind each simulation was to identify the drivers of significant glacier fluctuations. The modelling results support the hypothesis that New Zealand moraine records reflect past climate, especially changes in temperature. Lateglacial climate was reconstructed to be 2-3 C lower than the present day. This temperature range agrees well with previous estimates from moraines and other climate proxy records in New Zealand. Modelled temperature estimates for the Holocene moraines are slightly colder than those derived from simpler methods, due to a non-linear relationship found between snowline lowering and glacier length. This relationship results from the specific valley shape and glacier geometry, and is likely to occur in other, similarly-shaped glacier valleys. The simulations forced by interannual stochastic variability in temperature do not show significant (>300 m) fluctuations in the glacier terminus. Such fluctuations can not explain the Holocene moraine sequence that I examined, which extends >2 km beyond the present-day glacier terminus. Stochastic temperature change could, however, in part, cause fluctuations in glacier extent during an overall glacier recession. Modelling shows that it is also unlikely that glaciers advanced to Holocene and Lateglacial moraine positions as a result of precipitation changes alone. For these reasons, temperature changes are a necessary part of explaining past glacier extents, especially during the Lateglacial, and the moraines examined here likely reflect changes in mean climate in New Zealand. The glacier modelling studies indicate that simpler methods, such as the accumulation area ratio, can be used to appropriately reconstruct past climate from glacial evidence, as long as the glacier catchment has a straight forward geometry, shallow bed slope and no tributary glaciers. Non-linear relationships between climate change and glacier length develop when valley shape is more complex, and glaciers within these systems are probably better simulated using a modelling approach. Using a numerical modelling approach, it is also possible to gain a greater understanding of glacier response time, length sensitivities, and estimates of ice extent in valleys within the model domain where geomorphic evidence is not available. In this manner, numerical models can be used as a tool for understanding past climate and glacier sensitivity, thus improving the confidence in the palaeoclimate interpretations

    A5: Grafton Notch State Park: Glacial Gorges and Streams Under Pressure in the Mahoosic Range, Maine

    Get PDF
    Guidebook for field trips in Western Maine and Northern New Hampshire: New England Intercollegiate Geological Conference, p. 95-104

    The Last Glacial Maximum in Central North Island, New Zealand: Palaeoclimate Inferences from Glacier Modelling

    Get PDF
    Quantitative palaeoclimate reconstructions provide data for evaluating the mechanisms of past, natural climate variability. Geometries of former mountain glaciers constrained by moraine mapping afford the opportunity to reconstruct palaeoclimate, due to the close relationship between ice extent and local climate. In this study, we present results from a series of experiments using a 2D coupled energy-balance/ice-flow model that investigate the palaeoclimate significance of Last Glacial Maximum m oraines within nine catchments in the central North Island, New Zealand. We find that the former ice limits can be simulated when present-day temperatures are reduced by between 4 and 7 â—¦C, if precipitation remains unchanged from present. The spread in the results between the nine catchments is likely to rep- resent the combination of chronological and model uncer- tainties. The majority of catchments targeted require tem- perature decreases of 5.1 to 6.3 â—¦ C to simulate the former glaciers, which represents our best estimate of the tempera- ture anomaly in the central North Island, New Zealand, dur- ing the Last Glacial Maximum. A decrease in precipitation of up to 25 % from present, as suggested by proxy evidence and climate models, increases the magnitude of the required temperature changes by up to 0.8 â—¦ C. Glacier model experi- ments using reconstructed topographies that exclude the vol- ume of post-glacial (\u3c 15 ka) volcanism generally increased the magnitude of cooling required to simulate the former ice limits by up to 0.5 â—¦ C. Our palaeotemperature estimates ex- pand the spatial coverage of proxy-based quantitative palaeo- climate reconstructions in New Zealand. Our results are also consistent with independent, proximal temperature recon- structions from fossil groundwater and pollen assemblages, as well as similar glacier modelling reconstructions from the central Southern Alps, which suggest air temperatures were ca. 6 â—¦ C lower than present across New Zealand during the Last Glacial Maximum

    A minimal clinically important difference measured by the Cambridge Pulmonary Hypertension Outcome Review for patients with idiopathic pulmonary arterial hypertension.

    Get PDF
    Funder: National Institute for Health Research; FundRef: https://doi.org/10.13039/501100000272Several patient-reported outcome measures have been developed to assess health status in pulmonary arterial hypertension. The required change in instrument scores needed, to be seen as meaningful to the individual, however remain unknown. We sought to identify minimal clinically important differences in the Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) and to validate these against objective markers of functional capacity. Minimal clinically important differences were established from a discovery cohort (n = 129) of consecutive incident cases of idiopathic pulmonary arterial hypertension with CAMPHOR scores recorded at treatment-naïve baseline and 4-12 months following pulmonary arterial hypertension therapy. An independent validation cohort (n = 87) was used to verify minimal clinically important differences. Concurrent measures of functional capacity relative to CAMPHOR scores were collected. Minimal clinically important differences were derived using anchor- and distributional-based approaches. In the discovery cohort, mean (SD) was 54.4 (16.4) years and 64% were female. Most patients (63%) were treated with sequential pulmonary arterial hypertension therapy. Baseline CAMPHOR scores were: Symptoms, 12 (7); Activity, 12 (7) and quality of life, 10 (7). Pulmonary arterial hypertension treatment resulted in significant improvements in CAMPHOR scores (p < 0.05). CAMPHOR minimal clinically important differences averaged across methods for health status improvement were: Symptoms, -4 points; Activity, -4 points and quality of life -3 points. CAMPHOR Activity score change ≥minimal clinically important difference was associated with significantly greater improvement in six-minute walk distance, in both discovery and validation populations. In conclusion, CAMPHOR scores are responsive to pulmonary arterial hypertension treatment. Minimal clinically important differences in pulmonary hypertension-specific scales may provide useful insights into treatment response in future clinical trials

    The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling

    Get PDF
    Abstract. Quantitative palaeoclimate reconstructions provide data for evaluating the mechanisms of past, natural climate variability. Geometries of former mountain glaciers constrained by moraine mapping afford the opportunity to reconstruct palaeoclimate, due to the close relationship between ice extent and local climate. In this study, we present results from a series of experiments using a 2D coupled energy-balance/ice-flow model that investigate the palaeoclimate significance of Last Glacial Maximum moraines within nine catchments in central North Island, New Zealand. We find that the former ice limits can be simulated when present day temperatures are reduced by between 4 °C and 7 °C, when precipitation remains unchanged from present. The spread in the results between the nine catchments is likely to represent the combination of chronological and model uncertainties. The temperature decrease required to simulate the former glaciers falls in the range of 5.1 °C and 6.3 °C for the majority of catchments targeted, which represents our best estimate of the peak temperature anomaly in central North Island, New Zealand during the Last Glacial Maximum. A decrease in precipitation, as suggested by proxy evidence and climate models, of up to 25 % from present, increases the magnitude of the required temperature changes by up to 0.8 °C. Glacier model experiments using reconstructed topographies that exclude the volume of post-glacial (&lt;15 ka) volcanism, generally increased the magnitude of cooling required to simulate the former ice limits by up to 0.5 °C. Our palaeotemperature estimates expand the spatial coverage of proxy-based quantitative palaeoclimate reconstructions in New Zealand, and are consistent with independent, proximal temperature reconstructions from fossil pollen assemblages, as well as similar glacier modelling reconstructions from central Southern Alps. </jats:p
    corecore