3 research outputs found

    Droplet ejection and sliding on a flapping film

    Get PDF
    Citation: X. Chen, N. Doughramaji, A.R. Betz, M.M. Derby, Droplet departure and ejection on flapping films, AIP Advances, 7, 035014.Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz). Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1–2 mm were observed for flapping films,compared to 3–4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter) were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2) were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input

    Vibration-Enhanced Droplet Motion Modes: Simulations of Rocking, Ratcheting, Ratcheting With Breakup, and Ejection

    No full text
    Citation: Huber, R. A., Campbell, M., Doughramaji, N., & Derby, M. M. (2019). Vibration-Enhanced Droplet Motion Modes: Simulations of Rocking, Ratcheting, Ratcheting With Breakup, and Ejection. Journal of Fluids Engineering, 141(7), 071105-071105–071113. https://doi.org/10.1115/1.4042037Power plant water usage is a coupling of the energy–water nexus; this research investigates water droplet motion, with implications for water recovery in cooling towers. Simulations of a 2.6 mm-diameter droplet motion on a hydrophobic, vertical surface were conducted in XFLOW using the lattice Boltzmann method (LBM). Results were compared to two experimental cases; in the first case, experimental and simulated droplets experi-enced 30 Hz vibrations (i.e.,60.1 mm x-direction amplitude,60.2 mm y-direction amplitude) and the droplet ratcheted down the surface. In the second case, 100 Hz vibrations(i.e.,60.8 mm x-direction amplitude,60.2 mm y-direction amplitude) caused dropletejection. Simulations were then conducted for a wide range of frequencies (i.e., 10–100Hz) and amplitudes (i.e.,60.018–50 mm), resulting in maximum accelerations of 0.197–1970 m/s2. Under low maximum accelerations (e.g.,<7 m/s2), droplets rocked upward and downward in rocking mode, but did not overcome the contact angle hysteresis and, therefore, did not move. As acceleration increased, droplets overcame the contact angle hysteresis and entered ratcheting mode. For vibrations that prompted droplet motion, droplet velocities varied between 10–1000 mm/s. At capillary numbers above approximately 0.0044 and Weber numbers above 3.6, liquid breakup was observed in ratcheting droplets (e.g., the formation of smaller child droplets from the parent droplet). It was noted that both x- and y-direction vibrations were required for droplet ejectio
    corecore