45 research outputs found

    Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [11C]PBR28 PET correlates with vascular disease measures

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction. In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [ 11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls. We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction. These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC

    Molecular biology of baculovirus and its use in biological control in Brazil

    Full text link

    Supplementary Material for: Neural Predictors of Successful Brief Psychodynamic Psychotherapy for Persistent Depression

    No full text
    <b><i>Background:</i></b> Psychodynamic psychotherapy has been used to treat depression for more than a century. However, not all patients respond equally well, and there are few reliable predictors of treatment outcome. <b><i>Methods:</i></b> We used resting <sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>FDG-PET) scans immediately before and after a structured, open trial of brief psychodynamic psychotherapy (n = 16) in conjunction with therapy process ratings and clinical outcome measures to identify neural correlates of treatment response. <b><i>Results:</i></b> Pretreatment glucose metabolism within the right posterior insula correlated with depression severity. Reductions in depression scores correlated with a pre- to posttreatment reduction in right insular metabolism, which in turn correlated with higher objective measures of patient insight obtained from videotaped therapy sessions. Pretreatment metabolism in the right precuneus was significantly higher in patients who completed treatment and correlated with psychological mindedness. <b><i>Conclusions:</i></b> Resting brain metabolism predicted both clinical course and relevant psychotherapeutic process during short-term psychodynamic psychotherapy for depression
    corecore