24 research outputs found

    Cross-Platform Mechanical Characterization of Lung Tissue

    Get PDF
    Published data on the mechanical strength and elasticity of lung tissue is widely variable, primarily due to differences in how testing was conducted across individual studies. This makes it extremely difficult to find a benchmark modulus of lung tissue when designing synthetic extracellular matrices (ECMs). To address this issue, we tested tissues from various areas of the lung using multiple characterization techniques, including micro-indentation, small amplitude oscillatory shear (SAOS), uniaxial tension, and cavitation rheology. We report the sample preparation required and data obtainable across these unique but complimentary methods to quantify the modulus of lung tissue. We highlight cavitation rheology as a new method, which can measure the modulus of intact tissue with precise spatial control, and reports a modulus on the length scale of typical tissue heterogeneities. Shear rheology, uniaxial, and indentation testing require heavy sample manipulation and destruction; however, cavitation rheology can be performed in situ across nearly all areas of the lung with minimal preparation. The Young’s modulus of bulk lung tissue using micro-indentation (1.4±0.4 kPa), SAOS (3.3±0.5 kPa), uniaxial testing (3.4±0.4 kPa), and cavitation rheology (6.1±1.6 kPa) were within the same order of magnitude, with higher values consistently reported from cavitation, likely due to our ability to keep the tissue intact. Although cavitation rheology does not capture the non-linear strains revealed by uniaxial testing and SAOS, it provides an opportunity to measure mechanical characteristics of lung tissue on a microscale level on intact tissues. Overall, our study demonstrates that each technique has independent benefits, and each technique revealed unique mechanical features of lung tissue that can contribute to a deeper understanding of lung tissue mechanics

    Evaluation of Typhoid Conjugate Vaccine Effectiveness in Ghana (TyVEGHA) Using a Cluster-Randomized Controlled Phase IV Trial: Trial Design and Population Baseline Characteristics.

    Get PDF
    Typhoid fever remains a significant health problem in sub-Saharan Africa, with incidence rates of >100 cases per 100,000 person-years of observation. Despite the prequalification of safe and effective typhoid conjugate vaccines (TCV), some uncertainties remain around future demand. Real-life effectiveness data, which inform public health programs on the impact of TCVs in reducing typhoid-related mortality and morbidity, from an African setting may help encourage the introduction of TCVs in high-burden settings. Here, we describe a cluster-randomized trial to investigate population-level protection of TYPBAR-TCV®, a Vi-polysaccharide conjugated to a tetanus-toxoid protein carrier (Vi-TT) against blood-culture-confirmed typhoid fever, and the synthesis of health economic evidence to inform policy decisions. A total of 80 geographically distinct clusters are delineated within the Agogo district of the Asante Akim region in Ghana. Clusters are randomized to the intervention arm receiving Vi-TT or a control arm receiving the meningococcal A conjugate vaccine. The primary study endpoint is the total protection of Vi-TT against blood-culture-confirmed typhoid fever. Total, direct, and indirect protection are measured as secondary outcomes. Blood-culture-based enhanced surveillance enables the estimation of incidence rates in the intervention and control clusters. Evaluation of the real-world impact of TCVs and evidence synthesis improve the uptake of prequalified/licensed safe and effective typhoid vaccines in public health programs of high burden settings. This trial is registered at the Pan African Clinical Trial Registry, accessible at Pan African Clinical Trials Registry (ID: PACTR202011804563392)

    Randomized trial of thymectomy in myasthenia gravis

    Get PDF

    The genomic epidemiology of multi-drug resistant invasive non-typhoidal Salmonella in selected sub-Saharan African countries

    Get PDF
    Funder: Swedish International Development Cooperation Agency (SIDA)Funder: Government of Republic of KoreaFunder: US Centers for Disease Control and PreventionBackground: Invasive non-typhoidal Salmonella (iNTS) is one of the leading causes of bacteraemia in sub-Saharan Africa. We aimed to provide a better understanding of the genetic characteristics and transmission patterns associated with multi-drug resistant (MDR) iNTS serovars across the continent. Methods: A total of 166 iNTS isolates collected from a multi-centre surveillance in 10 African countries (2010–2014) and a fever study in Ghana (2007–2009) were genome sequenced to investigate the geographical distribution, antimicrobial genetic determinants and population structure of iNTS serotypes–genotypes. Phylogenetic analyses were conducted in the context of the existing genomic frameworks for various iNTS serovars. Population-based incidence of MDR-iNTS disease was estimated in each study site. Results: Salmonella Typhimurium sequence-type (ST) 313 and Salmonella Enteritidis ST11 were predominant, and both exhibited high frequencies of MDR; Salmonella Dublin ST10 was identified in West Africa only. Mutations in the gyrA gene (fluoroquinolone resistance) were identified in S. Enteritidis and S. Typhimurium in Ghana; an ST313 isolate carrying blaCTX-M-15 was found in Kenya. International transmission of MDR ST313 (lineage II) and MDR ST11 (West African clade) was observed between Ghana and neighbouring West African countries. The incidence of MDR-iNTS disease exceeded 100/100 000 person-years-of-observation in children aged <5 years in several West African countries. Conclusions: We identified the circulation of multiple MDR iNTS serovar STs in the sampled sub-Saharan African countries. Investment in the development and deployment of iNTS vaccines coupled with intensified antimicrobial resistance surveillance are essential to limit the impact of these pathogens in Africa

    Whole genome sequence analysis of Salmonella Typhi provides evidence of phylogenetic linkage between cases of typhoid fever in Santiago, Chile in the 1980s and 2010-2016.

    Get PDF
    Typhoid fever epidemiology was investigated rigorously in Santiago, Chile during the 1980s, when Salmonella enterica serovar Typhi (S. Typhi) caused seasonal, hyperendemic disease. Targeted interventions reduced the annual typhoid incidence rates from 128-220 cases/105 population occurring between 1977-1984 to <8 cases/105 from 1992 onwards. As such, Santiago represents a contemporary example of the epidemiologic transition of an industrialized city from amplified hyperendemic typhoid fever to a period when typhoid is no longer endemic. We used whole genome sequencing (WGS) and phylogenetic analysis to compare the genotypes of S. Typhi cultured from acute cases of typhoid fever occurring in Santiago during the hyperendemic period of the 1980s (n = 74) versus the nonendemic 2010s (n = 80) when typhoid fever was rare. The genotype distribution between "historical" (1980s) isolates and "modern" (2011-2016) isolates was similar, with genotypes 3.5 and 2 comprising the majority of isolations, and 73/80 (91.3%) of modern isolates matching a genotype detected in the 1980s. Additionally, phylogenomically 'ancient' genotypes 1.1 and 1.2.1, uncommon in the global collections, were also detected in both eras, with a notable rise amongst the modern isolates. Thus, genotypes of S. Typhi causing acute illness in the modern nonendemic era match the genotypes circulating during the hyperendemic 1980s. The persistence of historical genotypes may be explained by chronic typhoid carriers originally infected during or before the 1980s

    How can the typhoid fever surveillance in Africa and the severe typhoid fever in Africa programs contribute to the introduction of typhoid conjugate vaccines?

    No full text
    BACKGROUND:The World Health Organization now recommends the use of typhoid conjugate vaccines (TCVs) in typhoid-endemic countries, and Gavi, the Vaccine Alliance, added TCVs into the portfolio of subsidized vaccines. Data from the Severe Typhoid Fever in Africa (SETA) program were used to contribute to TCV introduction decision-making processes, exemplified for Ghana and Madagascar. METHODS:Data collected from both countries were evaluated, and barriers to and benefits of introduction scenarios are discussed. No standardized methodological framework was applied. RESULTS:The Ghanaian healthcare system differs from its Malagasy counterpart: Ghana features a functioning insurance system, antimicrobials are available nationwide, and several sites in Ghana deploy blood culture-based typhoid diagnosis. A higher incidence of antimicrobial-resistant Salmonella Typhi is reported in Ghana, which has not been identified as an issue in Madagascar. The Malagasy people have a low expectation of provided healthcare and experience frequent unavailability of medicines, resulting in limited healthcare-seeking behavior and extended consequences of untreated disease. CONCLUSIONS:For Ghana, high typhoid fever incidence coupled with spatiotemporal heterogeneity was observed. A phased TCV introduction through an initial mass campaign in high-risk areas followed by inclusion into routine national immunizations prior to expansion to other areas of the country can be considered. For Madagascar, a national mass campaign followed by routine introduction would be the introduction scenario of choice as it would protect the population, reduce transmission, and prevent an often-deadly disease in a setting characterized by lack of access to healthcare infrastructure. New, easy-to-use diagnostic tools, potentially including environmental surveillance, should be explored and improved to facilitate identification of high-risk areas
    corecore