7 research outputs found

    Rorty\u27s Utopian Aims

    Get PDF

    RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification

    Get PDF
    West Nile virus (WNV) exists in nature as a genetically diverse population of competing genomes. This high genetic diversity and concomitant adaptive plasticity has facilitated the rapid adaptation of WNV to North American transmission cycles and contributed to its explosive spread throughout the New World. WNV is maintained in nature in a transmission cycle between mosquitoes and birds, with intrahost genetic diversity highest in mosquitoes. The mechanistic basis for this increase in genetic diversity in mosquitoes is poorly understood. To determine whether the high mutational diversity of WNV in mosquitoes is driven by RNA interference (RNAi), we characterized the RNAi response to WNV in the midguts of orally exposed Culex pipiens quinquefasciatus using high-throughput, massively parallel sequencing and estimated viral genetic diversity. Our data demonstrate that WNV infection in orally exposed vector mosquitoes induces the RNAi pathway and that regions of the WNV genome that are more intensely targeted by RNAi are more likely to contain point mutations compared to weakly targeted regions. These results suggest that, under natural conditions, positive selection of WNV within mosquitoes is stronger in regions highly targeted by the host RNAi response. Further, they provide a mechanistic basis for the relative importance of mosquitoes in driving WNV diversification

    Panel

    No full text
    The panel continued the debate surrounding regulation of the Internet. Specifically, they discussed the steps some states are taking to regulate where the Federal government has retreated, and whether such states have the legal authority to do so

    Panel

    No full text
    The panel continued the debate surrounding regulation of the Internet. Specifically, they discussed the steps some states are taking to regulate where the Federal government has retreated, and whether such states have the legal authority to do so

    Cloud Provider Connectivity in the Flat Internet

    No full text
    The Tier-1 ISPs have been considered the Internet's backbone since the dawn of the modern Internet 30 years ago, as they guarantee global reachability. However, their influence and importance are waning as Internet flattening decreases the demand for transit services and increases the importance of private interconnections. Conversely, major cloud providers - Amazon, Google, IBM, and Microsoft - are gaining in importance as more services are hosted on their infrastructures. They ardently support Internet flattening and are rapidly expanding their global footprints, which enables them to bypass the Tier-1 ISPs and other large transit providers to reach many destinations. In this paper we seek to quantify the extent to which the cloud providers' can bypass the Tier-1 ISPs and other large transit providers. We conduct comprehensive measurements to identify the neighbor networks of the major cloud providers and combine them with AS relationship inferences to model the Internet's AS-level topology to calculate a new metric, hierarchy-free reachability, which characterizes the reachability a network can achieve without traversing the networks of the Tier-1 and Tier-2 ISPs. We show that the cloud providers are able to reach over 76% of the Internet without traversing the Tier-1 and Tier-2 ISPs, more than virtually every other network
    corecore