5 research outputs found

    Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic

    Get PDF
    Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ∼5.8 million predicted proteins across seven sites, from three different size classes: 0.1–0.8, 0.8–3.0 and 3.0–200.0 μm. Taxonomic and metabolic analyses suggest that sequences from the 0.1–0.8 μm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8–200 μm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially

    Comprehensive genomic characterization of squamous cell lung cancers

    Get PDF
    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment. As part of The Cancer Genome Atlas, here we profile 178 lung squamous cell carcinomas to provide a comprehensive landscape of genomic and epigenomic alterations. We show that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour. We find statistically recurrent mutations in 11 genes, including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations are seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2 and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH kinase pathway genes in 47%, and CDKN2A and RB1 in 72% of tumours. We identified a potential therapeutic target in most tumours, offering new avenues of investigation for the treatment of squamous cell lung cancers.National Institutes of Health (U.S.) (Grant U24 CA126561)National Institutes of Health (U.S.) (Grant U24 CA126551)National Institutes of Health (U.S.) (Grant U24 CA126554)National Institutes of Health (U.S.) (Grant U24 CA126543)National Institutes of Health (U.S.) (Grant U24 CA126546)National Institutes of Health (U.S.) (Grant U24 CA126563)National Institutes of Health (U.S.) (Grant U24 CA126544)National Institutes of Health (U.S.) (Grant U24 CA143845)National Institutes of Health (U.S.) (Grant U24 CA143858)National Institutes of Health (U.S.) (Grant U24 CA144025)National Institutes of Health (U.S.) (Grant U24 CA143882)National Institutes of Health (U.S.) (Grant U24 CA143866)National Institutes of Health (U.S.) (Grant U24 CA143867)National Institutes of Health (U.S.) (Grant U24 CA143848)National Institutes of Health (U.S.) (Grant U24 CA143840)National Institutes of Health (U.S.) (Grant U24 CA143835)National Institutes of Health (U.S.) (Grant U24 CA143799)National Institutes of Health (U.S.) (Grant U24 CA143883)National Institutes of Health (U.S.) (Grant U24 CA143843)National Institutes of Health (U.S.) (Grant U54 HG003067)National Institutes of Health (U.S.) (Grant U54 HG003079)National Institutes of Health (U.S.) (Grant U54 HG003273
    corecore