5 research outputs found

    An experimental test of the Jarzynski equality in a mechanical experiment

    Get PDF
    We have experimentally checked the Jarzynski equality and the Crooks relation on the thermal fluctuations of a macroscopic mechanical oscillator in contact with a heat reservoir. We found that, independently of the time scale and amplitude of the driving force, both relations are satisfied. These results give credit, at least in the case of Gaussian fluctuations, to the use of these relations in biological and chemical systems to estimate the free energy difference between two equilibrium states. An alternative method to estimate of the free nergy difference in isothermal process is proposed too.Comment: submitted to Europhysics Letter

    Work fluctuation theorems for harmonic oscillators

    Get PDF
    The work fluctuations of an oscillator in contact with a thermostat and driven out of equilibrium by an external force are studied experimentally and theoretically within the context of Fluctuation Theorems (FTs). The oscillator dynamics is modeled by a second order Langevin equation. Both the transient and stationary state fluctuation theorems hold and the finite time corrections are very different from those of a first order Langevin equation. The periodic forcing of the oscillator is also studied; it presents new and unexpected short time convergences. Analytical expressions are given in all cases

    Estimate of the free energy difference in mechanical systems from work fluctuations: experiments and models

    Get PDF
    The work fluctuations of an oscillator in contact with a heat reservoir and driven out of equilibrium by an external force are studied experimentally. The oscillator dynamics is modeled by a Langevin equation. We find both experimentally and theoretically that, if the driving force does not change the equilibrium properties of the thermal fluctuations of this mechanical system, the free energy difference ΔF\Delta F between two equilibrium states can be exactly computed using the Jarzynski equality (JE) and the Crooks relation (CR) \cite{jarzynski1, crooks1, jarzynski2}, independently of the time scale and amplitude of the driving force. The applicability limits for the JE and CR at very large driving forces are discussed. Finally, when the work fluctuations are Gaussian, we propose an alternative empirical method to compute ΔF\Delta F which can be safely applied, even in cases where the JE and CR might not hold. The results of this paper are useful to compute ΔF\Delta F in complex systems such as the biological ones.Comment: submitted to Journal of Statistical Mechanics: Theory and experimen

    Thermodynamic time asymmetry in nonequilibrium fluctuations

    Get PDF
    We here present the complete analysis of experiments on driven Brownian motion and electric noise in a RCRC circuit, showing that thermodynamic entropy production can be related to the breaking of time-reversal symmetry in the statistical description of these nonequilibrium systems. The symmetry breaking can be expressed in terms of dynamical entropies per unit time, one for the forward process and the other for the time-reversed process. These entropies per unit time characterize dynamical randomness, i.e., temporal disorder, in time series of the nonequilibrium fluctuations. Their difference gives the well-known thermodynamic entropy production, which thus finds its origin in the time asymmetry of dynamical randomness, alias temporal disorder, in systems driven out of equilibrium.Comment: to be published in : Journal of Statistical Mechanics: theory and experimen

    Fluctuations of the total entropy production in stochastic systems

    Get PDF
    Fluctuations of the excess heat in an out of equilibrium steady state are experimentally investigated in two stochastic systems : an electric circuit with an imposed mean current and a harmonic oscillator driven out of equilibrium by a periodic torque. In these two linear systems, we study excess heat that represents the difference between the dissipated heat out of equilibrium and the dissipated heat at equilibrium. Fluctuation theorem holds for the excess heat in the two experimental systems for all observation times and for all fluctuation magnitudes.Comment: 6
    corecore