236 research outputs found

    Fine Mapping of Posttranslational Modifications of the Linker Histone H1 from Drosophila melanogaster

    Get PDF
    The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs), including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear. This is in part due to the fact that most of the studies have been performed in organisms that have several H1 variants, which complicates the analyses. We have chosen Drosophila melanogaster, a model organism, which has a single H1 variant, to approach the study of the role of H1 PTMs during embryonic development. Mass spectrometry mapping of the entire sequence of the protein showed phosphorylation only in the ten N-terminal amino acids, mostly at S10. For the first time, changes in the PTMs of a linker H1 during the development of a multicellular organism are reported. The abundance of H1 monophosphorylated at S10 decreases as the embryos age, which suggests that this PTM is related to cell cycle progression and/or cell differentiation. Additionally, we have found a polymorphism in the protein sequence that can be mistaken with lysine methylation if the analysis is not rigorous

    Genotyping the hepatitis B virus with a fragment of the HBV DNA polymerase gene in Shenyang, China

    Get PDF
    The hepatitis B virus (HBV) has been classified into eight genotypes (A-H) based on intergenotypic divergence of at least 8% in the complete nucleotide sequence or more than 4% in the S gene. To facilitate the investigation of the relationship between the efficacy of drug treatment and the mutation with specific genotype of HBV, we have established a new genotyping strategy based on a fragment of the HBV DNA polymerase gene. Pairwise sequence and phylogenetic analyses were performed using CLUSTAL V (DNASTAR) on the eight (A-H) standard full-length nucleotide sequences of HBV DNA from GenBank (NCBI) and the corresponding semi-nested PCR products from the HBV DNA polymerase gene. The differences in the semi-nested PCR fragments of the polymerase genes among genotypes A through F were greater than 4%, which is consistent with the intergenotypic divergence of at least 4% in HBV DNA S gene sequences. Genotyping using the semi-nested PCR products of the DNA polymerase genes revealed that only genotypes B, C, and D were present in the 50 cases, from Shenyang, China, with a distribution of 11 cases (22%), 25 cases (50%), and 14 cases (28%) respectively. These results demonstrate that our new genotyping method utilizing a fragment of the HBV DNA polymerase gene is valid and can be employed as a general genotyping strategy in areas with prevalent HBV genotypes A through F. In Shenyang, China, genotypes C, B, and D were identified with this new genotyping method, and genotype C was demonstrated to be the dominant genotype

    The interaction of HAb18G/CD147 with integrin α6β1 and its implications for the invasion potential of human hepatoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HAb18G/CD147 plays pivotal roles in invasion by hepatoma cells, but the underlying mechanism remains unclear. Our previous study demonstrated that overexpression of HAb18G/CD147 promotes invasion by interacting with integrin α3β1. However, it has never been investigated whether α3β1 is solely responsible for this process or if other integrin family members also interact with HAb18G/CD147 in human hepatoma cells.</p> <p>Methods</p> <p>Human SMMC-7721 and FHCC98 cells were cultured and transfected with siRNA fragments against HAb18G/CD147. The expression levels of HAb18G/CD147 and integrin α6β1 were determined by immunofluorescent double-staining and confocal imaging analysis. Co-immunoprecipitation and Western blot analyses were performed to examine the native conformations of HAb18G/CD147 and integrin α6β1. Invasion potential was evaluated with an invasion assay and gelatin zymography.</p> <p>Results</p> <p>We found that integrin α6β1 co-localizes and interacts with HAb18G/CD147 in human hepatoma cells. The enhancing effects of HAb18G/CD147 on invasion capacity and secretion of matrix metalloproteinases (MMPs) were partially blocked by integrin α6β1 antibodies (<it>P </it>< 0.01). Wortmannin, a specific phosphatidylinositol kinase (PI3K) inhibitor that reverses the effect of HAb18G/CD147 on the regulation of intracellular Ca<sup>2+ </sup>mobilization, significantly reduced cell invasion potential and secretion of MMPs in human hepatoma cells (<it>P </it>< 0.05). Importantly, no additive effect between Wortmannin and α6β1 antibodies was observed, indicating that α6β1 and PI3K transmit the signal in an upstream-downstream relationship.</p> <p>Conclusion</p> <p>These results suggest that α6β1 interacts with HAb18G/CD147 to mediate tumor invasion and metastatic processes through the PI3K pathway.</p

    Oxygen-Glucose Deprivation Induced Glial Scar-Like Change in Astrocytes

    Get PDF
    It has been demonstrated that cerebral ischemia induces astrocyte reactivity, and subsequent glial scar formation inhibits axonal regeneration during the recovery phase. Investigating the mechanism of glial scar formation will facilitate the development of strategies to improve axonal regeneration. However, an in vitro model of ischemia-induced glial scar has not yet been systematically established.In the present study, we at the first time found that oxygen-glucose deprivation (OGD) in vitro can induce rat cortical astrocytes to present characteristics of glial scar. After OGD for 6 h, astrocytes showed a remarkable proliferation following 24 h reperfusion, evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and BrdU immunocytochemistry. Meanwhile, the expression of glial fibrillary acidic protein significantly increased, so did the expression of neurocan, which is a hallmark of the glial scar. In further experiments, neurons were co-cultured with astrocytes, which had been exposed to OGD, and then the immunostaining of class III β-tubulin was carried out to assess the neurite growth. When the co-culture was performed at 48 h reperfusion of astrocytes, the neurite growth was obviously inhibited, and this inhibition could be reversed by chondroitinase ABC, which digests glycosaminoglycan chains on CSPGs, including neurocan. However, the processes of neurons were elongated, when the co-culture was performed immediately after OGD.Our results indicated that after conditioned OGD the astrocytes presented the characteristics of the glial scar, which are also comparable to the astrocytes in acute and chronic phases after cerebral ischemia in vivo. Therefore, the present system may be used as an in vitro model to explore the mechanisms underlying glial scar formation and the treatments to improve axonal regeneration after cerebral ischemia

    Effects of Ethanol and NAP on Cerebellar Expression of the Neural Cell Adhesion Molecule L1

    Get PDF
    The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs), and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7) rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10−12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression

    The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use.</p> <p>Methods</p> <p>The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an <it>in vitro </it>neurite growth assay and an <it>in vivo </it>neuronal injury model, spinal cord contusion injury, were employed.</p> <p>Results</p> <p>ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury.</p> <p>Conclusions</p> <p>Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.</p

    Herbal Medicines for Parkinson's Disease: A Systematic Review of Randomized Controlled Trials

    Get PDF
    OBJECTIVE: We conducted systematic review to evaluate current evidence of herbal medicines (HMs) for Parkinson's disease (PD). METHODS: Along with hand searches, relevant literatures were located from the electronic databases including CENTRAL, MEDLINE, EMBASE, CINAHL, AMED, PsycInfo, CNKI, 7 Korean Medical Databases and J-East until August, 2010 without language and publication status. Randomized controlled trials (RCTs), quasi-randomized controlled trials and randomized crossover trials, which evaluate HMs for idiopathic PD were selected for this review. Two independent authors extracted data from the relevant literatures and any disagreement was solved by discussion. RESULTS: From the 3432 of relevant literatures, 64 were included. We failed to suggest overall estimates of treatment effects on PD because of the wide heterogeneity of used herbal recipes and study designs in the included studies. When compared with placebo, specific effects were not observed in favor of HMs definitely. Direct comparison with conventional drugs suggested that there was no evidence of better effect for HMs. Many studies compared combination therapy with single active drugs and combination therapy showed significant improvement in PD related outcomes and decrease in the dose of anti-Parkinson's drugs with low adverse events rate. CONCLUSION: Currently, there is no conclusive evidence about the effectiveness and efficacy of HMs on PD. For establishing clinical evidence of HMs on PD, rigorous RCTs with sufficient statistical power should be promoted in future

    A reference human induced pluripotent stem cell line for large-scale collaborative studies

    Get PDF
    Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field
    • …
    corecore